DCS 500 thyristor power converter

for DC drive systems 25 to 5150 A 6 to 4900 kW

System Description DCS 500B / DCF 500B

Latest Technology, High Performance and a User Friendly Concept

The DCS 500 series is a complete range of DC converters with high performance and reliability intended for the supply and control of DC machine armatures.

DCA 500 is a DCS 500 converter module mounted in a converter enclosure called "Drives MNS" (see separate documentation).

DCF 500 is a DCS 500 module modified in a way to supply other consumers than armature circuits of DC machines (e.g. inductive loads like motor field windings, magnets etc.).

For revamp projects ABB has created a special "Rebuild Kit" called **DCR 500** to polish up your old DC power stack with a new modern digital front end (see separate documentation.

A selection of options is available to provide the user with a system meeting the most demanding technical requirements and performance expectations as well as many safety standards.

Common control electronics throughout the whole range reduce spare parts, inventory and training.

Wide Variety of Industrial Applications

The DCS, DCA, DCF and DCR converters can handle most demanding applications like:

- Metals
- Pulp & Paper
- Material handling
- Test Rigs
- Food & Beverage
- Printing
- Plastic & Rubber
- Oil Rigs
- Vessels
- Ski lifts
- Magnets
- MG Sets
- Electrolysis
- Battery Chargers
- and more

TOOLS

• Effort, time and cost will be saved with the userfriendly **CMT-Tool** (Commissioning and Maintenance Tool) for drive programming, commissioning, monitoring and maintenance.

- Data Logger Trending Fault Logger
- Parameter/Signals Local operation
- GAD Tool (Graphical Application Designer) contains an extensive library of standard function blocks for the creation of customized software solutions creating conveniently the documentation during programming.

Both, CMT and GAD, represent a powerful set for each design, commissioning and service engineer to achieve best results and performance.

II D 1-2

- Ilexible design
- user-friendliness

DCS 500 is a freely programmable drive to meet almost every application. Templates like Master-Follower, Winder etc. can be obtained.

The DCS 500 constitutes a complete program for ratings between 25 A and 5150 A as a power converter module (for 12-pulse parallel connection, approx. 10,000 A), suitable for all commonly used three-phase systems.

All our products are CE marked.

The DC drives factory of ABB Automation Products, Drives Division in Lampertheim has implemented and maintains a quality management system according to DIN EN **ISO 9001** and an environmental management system according to DIN EN **ISO 14001**.

DCS 500 Drives are approved according to CSA (Canadian Standards Association) and NRTL /C.

DCS 500 Drives are also approved according to UL (Underwriters Laboratory).

They also comply with the relevant EMC standards for Australia and New Zealand and are C-Tick marked.

DCS 500 converter units are suitable for both, standard drive applications as well as demanding applications.

Appropriate **PC programs** ensure that the drives are human-engineered for user-friendly operator control.

Unit range

The range comprises of 4 sizes, C1, C2, A5 and C4. We can deliver both modules and standard cubicles.

Basic hardware complements

- * Thyristor bridge(s) (from size A5 with leg fuses installed)
- * Temperature monitor for the thyristor bridge(s)
- **米** Fan
- * Power supply for the electronics
- * Microprocessor board

Additional components for integration in the module

- * Field power converter
 - uncontrolled full wave diode bridge, 6A or
 - half-controlled diode/thyristor bridge, 16A
- * Communication board
- * Control panel

Moreover, the accessories listed below can be used to individually customize the drive package in accordance with the application intended * External field supply units

- * Additional I/O boards
- * Interface modules for various of
- * Interface modules for various communication protocol
- * EMC filter(s)
- * Application software packages
- * PC programs

The drive system functionality can be integrated with various fieldbus control systems from simple to factory-wide control.

C1 - Module

Switchgear cubicle

List of contents
II D SYSTEM DESCRIPTION 1 DCS 500 - a State-of-the-art technology II D 1-3
2 DCS 500 components overview II D 2-1 2.1 Environmental conditions II D 2-4 2.2 DCS 500 power converter modules II D 2-5 2.3 DCS 500 overload capability II D 2-8 2.4 Field Supply II D 2-10 2.5 Options for DCS 500B / DCF 500B converter mod. II D 2-12 Inputs/Outputs II D 2-15 Serial interface II D 2-16 for operation II D 2-16 for operation II D 2-18 Line reactors for armature and field supply II D 2-18 Line reactors for armature-cuircuit and field supplies of DC drives supplies of DC drives II D 2-22 Fuses and fuse holders for 2-phase field supply II D 2-22 Fuses and fuse holders for 2-phase field supply II D 2-22 Electronic system / fan supply II D 2-23 Commutating reactor II D 2-23 Earth fault monitor II D 2-23 EMC filter II D 2-23
 3 How to engineer your drive II D 3-1 3.1 Standard drive configuration using an internal field II D 3-3 3.2 Drive configuration using the internal field with
reduced external components II D 3-5 3.3 Standard drive configuration using an external half-controlled field (1-ph) II D 3-6 3.4 Standard configuration using a fully-controlled
 iiid (3-ph) without armature converter
4 Overview of Software (Vers. 21.2xx)II D 4-14.1 GAD Engineering ProgramII D 4-14.2 Introduction to the structure and handlingII D 4-2
Software structure diagrams including comments

2 DCS 500 components overview

Description of the converter

The **documentation** in hand describes the functionality of DCS 500 converter units as well as the cooperation of all single components belonging to a complete drive system.

As additional documentation is available:

DCS 500 **Technical Data** giving information about all direct technical data for components used inside and out-

side the converter module.

DCS 500 **Operating Instructions** including information and advise to commission the drive.

If three phase DCF 500 field supply units are needed please use the same documents as for DCS 500 armature converters.

Supplementary documentation

DCA 500 System description for standard cubicles equipped with DC drives.

For those, who want to reprogram or adapt the software of their drive a detailed comprehensive description of the **software structure** of the drive as

well as of all available **function blocs** can be delivered. This documentation is only available as data file in English language.

As separate document for service engineers a DCS 500 Service Manual can be ordered .

Engineering and design peo-

ple for drive systems can get a separate collection of information with regard to installation, sizing, fusing etc. of DC drives called "**Technical** guide".

Drive configuration

DCS 500 drives are freely programmable and therefore also terminals with their in and outs can be modified in their functionality.

When you receive your converter all terminals from X3: to X7: are set to a default configuration as shown below. This enables you to connect your drive according to connection example (see *chapter 3*) without any changes.

In case you want to reconfigure terminals by means of software, please read the software description first and inform yourself about the possibilities you have before you start. (Never change any terminal while your drive is still connected to the mains!). After that you need to make sure that the correct signals are provided to your terminals.

				(DO8 on SDCS-POW-1)
X6: Analogue IN	X4: Analogue IN / OUT	X5: Encoder	X6: Digital IN	X7: Digital OUT
AITAC AI1 AI2 AI3	914 0 V 10V 10V 10V 10V 10V 10V 10V 10V		DI1 DI2 DI3 DI4 DI5 DI6 DI6 +48 +48	D01 D02 D04 D05 D06 D06 D06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
90270 V - 3090 V - 830 V - TACHO + TACHO + + TarcHo + + +	FREE AI 4 + + + + + + + + + + + + + + + + + +	CH A + CH A - CH B + CH B + CH B - CH Z - CH Z - CH Z - CH Z - CH Z - CH Z + CH A +	Converter Fan Motor Fan Main contactor FREE Emergency Stop RESET OUVOFF RUN	Fan Contactor Excitation contactor Main contactor Ready Running Running FREE FREE

DCS 500B

The DCS 500 power converter together with the options or accessories is designed to control DC motors as well as other DC loads. In case of DC motors the

DCS 500B converter itself is used for the armature supply and a build-in or external field supply to control the field current.

Fig. 2/1:

DCS 500 Components overview

This overview has been designed to help you to familiarize yourself with the system; its main components are shown in the diagram above. The system's heart is the DCS 500 power converter module.

DCF 500B

The hardware of a DCS 500B converter had been taken as a basis to get the DCF 500B converter which is used to control high inductive loads. Both converters use the same software. Looking on a complete system these two converters differ in some boards, the options and the wiring (the option CZD-0x is not needed in every case; see manual *Technical Data*).

Fig. 2/2: DCF 500 Components overview

System connection

230 to 1000 V to IEC 38
±10% continuous; ±15% short-time *
50 Hz or 60 Hz
50 Hz ±2 %; 60 Hz ±2 %
50 Hz: ±5 Hz; 60 Hz: ± 5 Hz
17 % / s

* = 0.5 to 30 cycles.

Please note: Special consideration must be taken for voltage deviation in regenerative mode.

Degree of protection

Converter Module and options (line choke, fuse holder, field supply unit, etc.): IP 00

Paint finish

Converter module: NCS 170 4 Y015R

Current reduction to (%)

Fig. 2.1/1: Effect of the site elevation above sea level on the converter's load capacity.

Regulatory Compliance

The converter module and enclosed converter components are designed for use in industrial environments. In EEA countries, the components fulfil the requirements of the EU directives, see table below.

European Union Directive	Manufashunaria Assumanas	Harmonized Standards			
European Union Directive	Manufacturer's Assurance	Converter module	Enclosed converter		
Machinery Directive 89/392/EEC 93/68/EEC	Declaration of Incorporation	EN 60204-1 [IEC 204-1]	EN 60204-1 [IEC 204-1]		
<i>Low Voltage Directive</i> 73/23/EEC 93/68/EEC	Declaration of Conformity	EN 60146-1-1 [IEC 146-1-1] EN 50178 [IEC] see additional IEC 664	EN 60204-1 [IEC 204-1]		
		EN 61800-3 [IEC 1800-3]	EN 61800-3 [IEC 1800-3]		
	Declaration of Conformity	were limits are under consideration EN 50081-2 / EN 50082-2 has been supplied			
<i>EMC Directive</i> 89/336/EEC 93/68/EEC	Provided that all installation instructions concerning cable selection, cabling and	in accordance with 3ADW 000 032 in accordance 3ADW 000 032 3ADW 000 091			
	EMC filters or dedicated transformer are followed.	The Technical Construction File to which this declaration relates has been assessed by Report and Certificate from ABB EMC Certification AB being the competent Body according to EMC Directive.			

Environmental limit values

Permissible cooling air temp. at converters air inlet with rated I pc: 0 to +40°C Relative humidity(at 5...40°C): 5 to 95%, no condensation Relative humidity(at 0...+5°C): 5 to 50%, no condensation Ambient temp. converter module: +40°C to 55°C; s. Fig. 2.1/2 Change of the ambient temp .: < 0.5°C / minute Storage temperature: -40 to +55°C Transport temperature: -40 to +70°C Pollution degree: Grade 2 Site elevation: <1000 m above M.S.L.: 100%, without current reduction >1000 m above M.S.L.: with current reduct., see Fig. 2.1/1

Vibration converter module: 0.5 g, 5 Hz to 55 Hz

Size	L
C1	59 dBA
C2	71 dBA
A5	75 dBA
C4	83 dBA
	Size C1 C2 A5 C4

Current reduction to (%)

North American Standards

In North America the system components fulfil the requirements of the table below.

Safety for Power conversion Equipment ≤ 600 V	Standard for module UL 508 C; available for converter modules (including internal field exciter units) sizes C1, C2; under preparation for sizes A5 and C4		
Industrial control Equipment: industrial products ≤ 600 V	CSA C 22.2. No.1495; available for sizes C1, C2, C4; under preparation for size A5		

The power converter modules are modular in construction. They are based on the casing, which houses the power section with the RC snubber circuit. There are four different sizes (C1a/b, C2a/b, A5, C4), graduated in terms of current and voltage ranges. All units are fancooled.

The power section is controlled by the unit's electronic system, which is identical for the entire range. Parts of the unit's electronic system can be installed in the unit, depending on the particular application involved, e.g. a field supply for the motor, or an interface board. A control/display panel is available for the operator. It can be snapped into place on the power converter module or installed in the switchgear cubicle door by means of a mounting kit.

Accessories such as external fuses, line reactors and the like are also available, for putting together a complete drive system.

Reference variables

The voltage characteristics are shown in Table 2.2/1. The DC voltage characteristics have been calculated using the following assumptions:

- U_{VN} = rated input terminal voltage, 3-phase
- Voltage tolerance ±10 %
- Internal voltage drop approx. 1%
- If a deviation or a voltage drop has to be taken into consideration in compliance with IEC and VDE standards, the output voltage or the output current must be reduced by the actual factor according to the table on the right.

System con-	DC	voltage	Ideal DC	Recommended
nection voltage	(max. M	otor voltage)	voltage	DCS 500
U	$U_{dmax 2-Q}$	$U_{\text{dmax 4-Q}}$	without load	Voltage class
			$U_{_{ m di0}}$	y=
230	265	240	310	4
380	440	395	510	4
400	465	415	540	4
415	480	430	560	4
440	510	455	590	5
460	530	480	620	5
480	555	500	640	5
500	580	520	670	5
525	610	545	700	6
575	670	600	770	6
600	700	625	810	6
660	765	685	890	7
690	800	720	930	7
790	915	820	1060	8
1000	1160	1040	1350	9
1190	1380	1235	1590	1

Table 2.2/1: DCS 500 max. DC voltages achievable with a specified input voltage.

If higher armature voltages are requested, please check carefully, wether your system is still working under safe conditiones.

		Max. permitted armature voltage depending on				
		Field exciter type				
Application	SDCS-FEX-1	SDCS-FEX-2	DCF 504			
			DCF 503/504			
			DCF 501B	DCF 502B		
Power always positive (U _a and I _a pos.).	2-Q	U	U	-		
Extruder		- amax 2-Q	- amax 2-Q			
Power often or always negative.	2-Q	U	U	U		
Unwinder, suspended load		dmax 4-Q	dmax 4-Q	dmax 4-Q		
Power sporadically negative.	2-Q	-	-	U _{dmax} 2.0 +		
Printing machine at electrical stop				change		
				software		
				parameter		
Power positive or negative.	4-Q	U	U	-		
Test rig		- dmax 4-Q	- dmax 4-Q			
Power positive, sporadically negative.	4-Q	U	U+	-		
		- dmax 4-Q	change			
			software			
			narameter			
			pulumeter	1		

Table 2.2/2: Maximum permitted armature voltage

Converter type \rightarrow y \rightarrow			y=4 (4	00 V)	y=5 (5	500 V)	y=6 (600 V)	y=7	(690 V)		
↓												
x=1 → 2-Q	I _D	_c [A]	I I _{AC}	[A]	P [k	W]	P [ł	<w]< td=""><td>P[</td><td>kW]</td><td>P</td><td>[kW]</td></w]<>	P[kW]	P	[kW]
x=2 → 4-Q	4Q	2Q	4Q	2Q	4Q	2Q	4Q	2Q	4Q	2Q	4Q	2Q
DCS50xB0025-y1	25	25	20	20	10	12	13	15				
DCS50xB0050-y1	50	50	41	41	21	23	26	29				
DCS50xB0050-61	50	50	41	41					31	35		
DCS50xB0075-y1	75	75	61	61	31	35	39	44				
DCS50xB0100-y1	100	100	82	82	42	47	52	58				
DCS50xB0110-61	110	100	90	82					69	70		
DCS50xB0140-y1	140	125	114	102	58	58	73	73				
DCS50xB0200-y1	200	180	163	147	83	84	104	104				
DCS50xB0250-y1	250	225	204	184	104	105	130	131				
DCS50xB0270-61	270	245	220	200					169	172		
DCS50xB0350-y1	350	315	286	257	145	146	182	183				
DCS50xB0450-y1	450	405	367	330	187	188	234	235	281	284		
DCS50xB0520-y1	520	470	424	384	216	219	270	273				
DCS50xB0680-y1	680	610	555	500	282	284	354	354				
DCS50xB0820-y1	820	740	670	605	340	344	426	429				
DCS50xB1000-y1	1000	900	820	738	415	418	520	522				
DCS50xB0903-y1	900	900	734	734					563	630	648	720
DCS50xB1203-y1	1200	1200	979	979	498	558	624	696				
DCS50xB1503-y1	1500	1500	1224	1224	623	698	780	870	938	1050	1080	1200
DCS50xB2003-y1	2000	2000	1632	1632	830	930	1040	1160		1400		1600
DCE50xB0025-y1	25	25	20	20	10	12	13	15				
DCE50xB0050-v1	50	50	41	41	21	23	26	20				
DCF50xB0075-v1	75	75	61	61	31	35	39	44				
DCF50xB0100-v1	100	100	82	82	42	47	52	58				
DCE50xB0200-v1	200	180	163	147	83	84	104	104				
DCE50xB0350-v1	350	315	286	257	145	146	182	183				
DCE50xB0450-v1	450	405	367	330	187	188	234	235				
DCF50xB0520-v1	520	470	424	384	216	219	270	273				

Table 2.2/3: Table of DCS 500B / DCF 500B units - construction types C1, C2, A5

Converter type ->	er type \rightarrow y \rightarrow		y=4 (400 V)	y=5 (500 V)	y=6 (600 V)	y=7 (690 V)	y=8 (790 V)	y=9 (1000V)	y=1 (1190V)
									(1)
	I _{DC} [A]	I _{AC} [A]	P [kW]						
2-Q converters									
DCS501B2050-y1	2050	1673			1435	1640	1876	2378	
DCS501B2500-y1	2500	2040	1163	1450	1750	2000			
DCS501B2650-y1	2650	2162						3074	3658
DCS501B3200-y1	3200	2611					2928	3712	4417
DCS501B3300-y1	3300	2693	1535	1914	2310	2640			
DCS501B4000-y1	4000	3264	1860	2320	2800	3200	3660	4640	5520
DCS501B4750-y1	4750	3876			3325	3800	4346		
DCS501B5150-y1	5150	4202	2395	2987					
4-O converters									
DCS502B2050-v1	2050	1673			1281	1476	1681	2132	
DCS502B2500-v1	2500	2040	1038	1300	1563	1800	1001	2102	
DCS502B2650-v1	2650	2162	1000	1000	1000	1000		2756	3280
DCS502B3200-v1	3200	2611					2624	3328	3960
DCS502B3300-y1	3300	2693	1370	1716	2063	2376			
DCS502B4000-y1	4000	3264	1660	2080	2500	2880	3280	4160	4950
DCS502B4750-y1	4750	3876			2969	3420	3895		
DCS502B5150-y1	5150	4202	2137	2678					

0 These converters are equipped with additional components. More information on request

Table 2.2/4: Table of DCS 500B units - construction type C4

Higher currents up to 15,000 A are achieved by paralleling converters - information on request.

Construction type C2

Construction type C1

Converter type ③	Dimensions	Weight	Clearances	Construct.	Power loss	Fan	Semiconductor
	H x W x D		top/bottom/side	type	at 500V	connection	Fuses
	[mm]	[kg]	[mm]		P _v [kW]		
DCS50xB0025-y1	420x273x195	7.1	150x100x5	C1a	< 0.2	230 V/1 ph	extern
DCS50xB0050-y1	420x273x195	7.2	150x100x5	C1a	< 0.2	230 V/1 ph	extern
DCS50xB0050-61	420x273x195	7.6	150x100x5	C1a	-	230 V/1 ph	extern
DCS50xB0075-y1	420x273x195	7.6	150x100x5	C1a	< 0.3	230 V/1 ph	extern
DCS50xB0100-y1	469x273x228	11.5	250x150x5	C1b	< 0.5	230 V/1 ph	extern
DCS50xB0110-61	469x273x228	11.5	250x150x5	C1b	-	230 V/1 ph	extern
DCS50xB0140-y1	469x273x228	11.5	250x150x5	C1b	< 0.6	230 V/1 ph	extern
DCS50xB0200-v1	505x273x361	22.3	250x150x5	C2a	< 0.8	230 V/1 ph	extern
DCS50xB0250-y1	505x273x361	22.3	250x150x5	C2a	< 1.0	230 V/1 ph	extern
DCS50xB0270-61	505x273x361	22.8	250x150x5	C2a	-	230 V/1 ph	extern
DCS50xB0350-y1	505x273x361	22.8	250x150x5	C2a	< 1.3	230 V/1 ph	extern
DCS50xB0450-y1	505x273x361	28.9	250x150x10	C2a	< 1.5	230 V/1 ph	extern
DCS50xB0520-y1	505x273x361	28.9	250x150x10	C2a	< 1.8	230 V/1 ph	extern
DCS50xB0680-y1	652x273x384	42	250x150x10	C2b	< 1.6	230 V/1 ph	extern
DCS50xB0820-y1	652x273x384	42	250x150x10	C2b	< 2.0	230 V/1 ph	extern
DCS50xB1000-y1	652x273x384	42	250x150x10	C2b	< 2.5	230 V/1 ph	extern
DCS50xB0903-y1	1050x510x410	110	300x100x20	A5	-	230 V/1-ph	intern
DCS50xB1203-y1	1050x510x410	110	300x100x20	A5	< 5.2	230 V/1-ph	intern
DCS50xB1503-y1	1050x510x410	110	300x100x20	A5	< 5.5	230 V/1-ph	intern
DCS50xB2003-y1	1050x510x410	110	300x100x20	A5	< 6.6	230 V/1-ph	intern
DCS50xB2050-v1L	2330x820x624 ①	2 350	\	C4	-	400/690 V/3-ph@	intern
DCS50xB2500-v1L	2330x820x624 ①	350		C4	< 12	400/690 V/3-ph@	intern
DCS50xB2650-v1L	2330x820x624 ①	2 350		C4	-	400/690 V/3-ph@	intern
DCS50xB3200-y1L	2330x820x624 ①	2 350	to be installed	C4	-	400/690 V/3-ph@	intern
DCS50xB3300-y1L	2330x820x624 ①	350	in cubicle	C4	< 15	400/690 V/3-ph④	intern
DCS50xB4000-y1L	2330x820x624 ①	2 350		C4	< 16	400/690 V/3-ph④	intern
DCS50xB4750-y1L	2330x820x624 ①	350		C4	-	400/690 V/3-ph④	intern
DCS50xB5150-y1L	2330x820x624 ①	350	/	C4	< 20	400/690 V/3-ph④	intern

① The dimensions for modules with busbar connection on the right side are 2330x800x624 mm (Busbar connection on the right side is optional) Example for the type designation: connection left DCS50xB2050-y1L; connection right DCS50xB2050-y1R)

 $\ensuremath{\textcircled{}^{2}}$ The depth of 1000 V / 1190 V units is 654 mm

3 x=1 \rightarrow 2-Q; x=2 \rightarrow 4-Q; y=4...9/1 \rightarrow 400...1000 V/1190 V supply voltage

④ On supply voltages up to 400 V in delta connection; from 415 V on in star connection

also available as field supply converter DCF50xB (for 500 V s. also table 2.2/3). Data are the same as the armature current converter DCS50xB Table 2.2/5: Table of DCS 500B units

II D 2-7

To match a drive system's components as efficiently as possible to the driven machine's load profile, the armature power converters DCS 500B can be dimensioned by means of the load cycle. Load cycles for driven machines have been defined in the IEC 146 or IEEE specifications, for example.

The currents for the DC I to DC IV types of load (see diagram on the following page) for the power converter modules are listed in the table below.

Unit type	I _{DC1}	I _{DC II}		I _{dc III}		I _{DC IV}	
	contin-	100 %	150 %	100 %	150 %	100 %	200 %
	uous	15 min	60 s	15 min	120 s	15 min	10 s
400 V / 500 V	[A]		[A]		[A]		[A]
DCS 50xB0025-41/51	25	24	36	23	35	24	48
DCS 50xB0050-41/51	50	44	66	42	63	40	80
DCS 50xB0075-41/51	75	60	90	56	84	56	112
DCS 50xB0100-41/51	100	71	107	69	104	68	136
DCS 501B0140-41/51	125	94	141	91	137	90	180
DCS 502B0140-41/51	140	106	159	101	152	101	202
DCS 501B0200-41/51	200	133	200	132	198	10	220
DC3 502B0200-41/51	200	149	224	140	219	124	240
DCS 507B0250-41/51	250	177	266	173	200	147	200
DCS 501B0350-41/51	315	240	360	233	350	210	420
DCS 502B0350-41/51	350	267	401	258	387	233	466
DCS 501B0450-41/51	405	317	476	306	459	283	566
DCS 502B0450-41/51	450	352	528	340	510	315	630
DCS 501B0520-41/51	470	359	539	347	521	321	642
DCS 502B0520-41/51	520	398	597	385	578	356	712
DCS 501B0680-41/51	610	490	735	482	732	454	908
DCS 502B0680-41/51	680	544	816	538	807	492	984
DCS 501B0820-41/51	740	596	894	578	867	538	1076
DCS 502B0820-41/51	820	664	996	648	972	598	1196
DCS 501B1000-41/51	900	700	1050	670	1005	620	1240
DCS 502B1000-41/51	1000	766	1149	736	1104	675	1350
DCS 50xB1203-41/51	1200	1000	1332	8/2	1308	764	1528
DCS 50xB1503-41/51	2000	1/200	2210	1/21	1/34	1261	2208
DCS 50xB2500-41/51	2000	1830	2745	1740	2610	1725	3450
DCS 50xB2300-41/51	3300	2416	3624	2300	3450	2277	4554
DCS 50xB4000-41/51	4000	2977	4466	2855	4283	2795	5590
DCS 50xB5150-41/51	5150	3800	5700	3669	5504	3733	7466
600 V / 690 V							
DCS 50xB0050-61	50	44	66	43	65	40	80
DCS 501B0110-61	100	79	119	76	114	75	150
DCS 502B0110-61	110	87	130	83	125	82	165
DCS 501B0270-61	245	193	290	187	281	169	338
DCS 502B0270-61	270	213	320	207	311	187	374
DCS 501B0450-61	405	316	4/4	306	459	282	564
DCS 502B0450-61	450	352	528	340	510	313	626
DCS 50xB0903-61/71	900	1200	1020	670	1005	594	1100
DCS 501B2003-61/71	2000	1/70	2210	1/04	2132	1361	2200
DCS 50xB2050-61/71	2000	1502	2253	1426	2132	1484	2968
DCS 50xB2500-61/71	2500	1830	2745	1740	2610	1725	3450
DCS 50xB3300-61/71	3300	2416	3624	2300	3450	2277	4554
DCS 50xB4000-61/71	4000	3036	4554	2900	4350	2950	5900
DCV 50xB4750-61/71	4750	3734	5601	3608	5412	3700	7400
790 V							
DCS 50xB2050-81	2050	1502	2253	1426	2139	1484	2968
DCS 50xB3200-81	3200	2655	3983	2540	3810	2485	4970
DCS 50xB4000-81	4000	3036	4554	2889	4334	2933	5866
DCS 50xB4750-81	4750	3734	5601	3608	5412	3673	/346
	2050	1577	0066	1600	2050	1/71	2040
DCS 50xB2050-91	2000	2000	2000	1000	2200	14/1	2342
DCS 50xB2000-91	3200	2551	3827	2428	3642	2458	4916
DCS 50xB3200-91	4000	2975	4463	2878	4317	2918	5836
1190 V	-000	2010		2010		2010	0000
Data on request							

x=1 → 2-Q; **x=2** → 4-Q

Table 2.3/1: The power converter modules' currents with the corresponding load cycles.

The characteristics are based on an ambient temperature of max. 40° C and an elevation of max. 1000 m

Types of load

Operating cycle	Load for converter	Typical applications	Load cycle
DCI	I _{DC I} continuous (I _{dN})	pumps, fans	100%
DC II	$I_{DC \parallel}$ for 15 min and 1,5 * $I_{DC \parallel}$ for 60 s	extruders, conveyor belts	15 min 15 min 150% 100%
DC III *	I _{DC III} for 15 min and 1,5 * I _{DC III} for 120 s	extruders, conveyor belts	15 min 150% 100%
DC IV *	$I_{DC IV}$ for 15 min and 2 * $I_{DC IV}$ for 10 s		200% 100%

* Load cycle is not identical to the menu item *Duty cycle* in the DCSize program ! Table 2.3/2: Definition of the load cycles

If the driven machine's load cycle does not correspond to one of the examples listed, you can determine the necessary power converter using the DCSize software program.

This program can be run under Microsoft[→] Windows, and enables you to dimension the motor and the power converter, taking types of load (load cycle), ambient temperature, site elevation, etc. into account. The design result will be presented in tables, charts, and can be printed out as well.

To facilitate the start-up procedure as much as possible, every power converter has been provided with a current measuring feature, which can be adjusted to the high current required by means of software parameters.

-				DC	Size Version 4.1			-
<u>F</u> ile	<u>S</u> etting:	s <u>P</u> roject	<u>C</u> ase	<u>H</u> elp				
								31.10.2000
	VD				<u>R</u> esult		<u>G</u> raph	
Cust	omer Info	mation					Supply	15 %
Cust	tomer	ABB Automa	tion Proc	lucts Gmb	Н]	Voltage [V]	500 5 %
Proje	ect	DCS 500]		
Cust	tomer Ref	123456	0	ur ref	789]	Frequency [Hz]	50 + 2 %
Case	e	1	H	andled by	H.Krause]	Voltage check	< - Z %
Load	d requirem	ents	Moto	or requirem	ients		Converter req	uirements
n ba	ise [rpm]	1000	0.	ABB	O existing		DCS500 DCS500	
n ma	ax [rpm]	1400	Туре	;	DMP132-2M		O DESBUU	© Module © 2-quadrant
Pnb	oase [k₩]	4,5	Cata	logue #	FR155241AB			4-quadrant
Pnn	nax [k₩]	4,5	Volta	age [V]	550 - 25 %		Current [A]	11
Duty	v cycle	DC I 🛨	Exci	tation [V]	220		Altitude [m]	1000
			Ambi	ient [*C]	40		Ambient [*C]	40
			Altitu	ude (m)	1000		Protection	IP 00 🛓
			Max	torque	100 % 1,7 m	in	Filter	Field reversal
	Input <u>D</u> eta	uils	IP 5	i4 👤 II	C 37 👤 IM 1001	Ŧ	Converter	<u>M</u> otor

Fig. 2.3/1: Entry screen of the PC for the dimensioning program.

Microsoft is a registered trademark. Windows is a designation of the Microsoft Corporation.

General data

- Currents from 6 to 520 A
- Minimum field current monitor
- Integrated external field power converter or completely separate switchgear cubicle
- 2-phase or 3-phase model
- Fully digital control (except SDCS-FEX-1)

We recommend integrating an autotransformer in the field power converter's supply circuit to adjust the AC input voltage to the field voltage and for reducing the voltage ripple in the field circuit. All field power converters (except for the SDCS-FEX-1) are controlled by the armature-circuit converter via a serial interface at a speed of 62.5 kBaud. This interface serves to parameterize, control and diagnose the field power converter and thus provides an option for exact control. Moreover, it enables you to control an internal (SDCS-FEX-2) and an external (DCF 501/2/3A/4A) or two external field supply units (2 x DCF 501/2/3A/ 4A). The respective software function required is available in every DC power converter.

Field converter types

SDCS-FEX-1

- Diode bridge
- 6 A rated current
- Internal minimum field current monitor, requiring no adjustment.
- Construction and components have been designed for an insulation voltage of 600 V AC.
- Output voltage U_A:

TOL = tolerance of line voltage in % U_v = Line voltage

 Recommendation: Field voltage ~ 0,9 * U_v

SDCS-FEX-2

- Half-controlled thyristor/diode bridge (1-Q)
- Microprocessor control, with the electronic system being supplied by the armature-circuit converter.
- Construction and components have been designed for an insulation voltage of 600 V AC.
- Fast-response excitation is possible with an appropriate voltage reserve; de-excitation takes place by field time constant.
- Output voltage U₁:

$$U_{A} = U_{V} * \left(\frac{100\% + TOL}{100\%}\right) * 0.9$$

TOL = tolerance of line voltage in % U_v = Line voltage

 Recommendation: Field voltage 0.6 to 0.8 * U_v

DCF 503A

- Half-controlled thyristor/diode bridge (1-Q)
- Microprocessor control with the control electronics being supplied separately (115...230 V/1-ph).
- Construction and components have been designed for an insulation voltage of 690 V AC.
- Output voltage U_A:

$$U_A = U_V * \left(\frac{100\% + TOL}{100\%}\right) * 0.9$$

TOL = tolerance of line voltage in % U_v = Line voltage

• Recommendation: Field voltage 0.6 to 0.8 * U_v

DCF 504A

- like DCF 503A, but
- fully-controlled antiparallel thyristor bridges (4-Q)
- This unit is permissible -in difference to the SDCS-FEX-2- for fast-response excitation / de-excitation as well as field reversal. For fast-response excitation an appropriate voltage reserve is necessary.

In the steady-state condition, the fully-controlled bridge runs in half-controlled mode so as to keep the voltage ripple as low as possible. With a quickly alternating field current, the bridge runs in fullycontrolled mode.

DCF 500B

This field power converter is used mainly for armaturecircuit converters with rated currents of 2050 to 5150 A. It consists of a modified armature-circuit converter.

- Output voltage U_A respectively U_{dmax 2-Q}: see table 2.2/1
- Recommendation: Field voltage 0.5 to 1.1 * U_v
- The three-phase field supply converters DCF 501/ 502 need a separate active Overvoltage Protection unit DCF 506 for protecting the power part against inadmissibly high voltages.

The overvoltage protection unit DCF 506 is suitable for 2-Q converters DCF 501 and for 4-Q converters DCF 502.

Assignment Field supply converter to Overvoltage protection unit

Field supply converter for motor fields	Overvoltage Protection
DCF50x-0025-51 DCF50x-0140-51	DCF506-0140-51
DCF50x-0200-51 DCF50x-0520-51	DCF506-0520-51

DCF501/502

DCF506-140-51, shown without cover

Unit type	Output current I _{DC} ① [A]	Supply voltage [V]	Installation site	Remarks
SDCS-FEX-1-0006	0.026	110V -15%500V/1-ph +10%	internal	external fuse, 6 A \Rightarrow I _{Frated}
SDCS-FEX-2-0016	0.316	110V -15%500V/1-ph +10%	internal	ext. fuse, reactor; for C1: 0.3 8 A \oplus , not to be used for C4 mod.!
DCF 503A-0050	0.350	110V -15%500V/1-ph +10%	external	auxiliary supply (115230V) if necessary via matching trans-
DCF 504A-0050	0.350	110V -15%500V/1-ph +10%	external	former; fuse external; Dimensions HxWxD: 370x125x342 [mm]
DCF 50xBxxxx-51	see table 2.2/3	200V500V/3-ph	external	are based on the hardware of the DCS 500B and additional hardware components (DCF 506); auxiliary supply (115/230V)

① Current reduction see also 2.1 Environmental conditions Fig.: 2.1/1 and 2.1/2 Table 2.4/1: Table of field converter units

In-/output signals

The converter can be connected in 4 different ways to a control unit via analogue/digital links. Only one of the four choices can be used at the same time. In addition to this an extension of I/O's by SDCS-IOE 1 is possible.

Description of I/O signals SDCS-CON-2

Description of I/O signals SDCS-IOB-2x & SDCS-IOB-3

Me	chanical system installed in the basic unit	Mechanical system always external, outside the basic unit
Те	rminals Screw-type terminals for finely stranded wires up to max. 2.5 mm ² cross-sectional area	Terminals Screw-clamp terminals for finely stranded wires up to max. 2.5 mm ² cross-sectional area
Fu ↔	1 tacho input Resolution: 12 bit + sign; differential input; common-mode range $\pm 20 \text{ V}$ 3 ranges from 83090270 V- with n _{max} 4 analogue inputs Range -100+10 V, 420 mA, 020 mA All as differential inputs; R _E = 200 kΩ; time constant of smoothing capacitor $\leq 2 \text{ ms}$ Input 1: Resolution: 12 bit + sign.; common-mode range $\pm 20 \text{ V}$ Inputs 2, 3, 4: Resolution: 11 bit + sign; common-mode range $\pm 40 \text{ V}$	Functionality of SDCS-IOB-3⇒1 tacho input Resolution: 12 bit + sign; differential input; common-mode range ±20 V Range 8 V- with n _{max} ; if higher tacho voltages are in use the tacho adaptation board PS 5311 is needed.⇒4 analogue inputs All as differential inputs; time constant of smoothing capacitor ≤2 ms Input 1: Range -10 V/-20 mA0+10 V/+20 mA; 4 20 mA unipolar; R _E = 200 kΩ/ 500Ω/ 500Ω; Resolution: 12 bit + sign; common-mode range ±20 V Inputs 2+3: Range as with input 1, in addition -1 V0+1 V R _E = 200 kΩ/ 500Ω/ 500Ω/ 20kΩ; Resolution: 11 bit + sign; common-mode range with -1 V0+1 V range ±10 V, otherwise ±40 V Input 4: Range as with input 1 R _E = 200 kΩ/ 500Ω/ 500Ω; Sesolution: 11 bit + sign; common-mode range ±40 V
Ŷ	2 outputs +10 V, -10 V, $I_A \le 5$ mA each; sustained-short-circuit-proof for reference potentiometer voltage supply 1 analogue output bipolar current feedback - from the power section; decoupled IdN $\Rightarrow \pm 3$ V; $I_A \le 5$ mA, short-circuit-proof	 (sum of phase currents ≠ 0) 2 outputs +10 V, -10 V, I_A ≤ 5 mA each; sustained short-circuit-proof for reference potentiometer voltage supply 1 analogue output Bipolar current feedback from the power section; decoupled
Ŷ	2 analogue outputs Range -100+10 V; $I_A \le 5$ mA Output signal and scaling can be selected by means of the software Resolution: 11 bit + sign	 ⇒ 2 analogue outputs Range -100+10 V; I_A ≤ 5 mA; short-circuit-proof Output signal and scaling can be selected by means of the software Resolution: 11 bit + sign ⇒ Current source for PT 100 or PTC element evaluation L = 5 mA / 1.5 mA
Û	$\begin{array}{c} \mbox{1 pulse generator input} \\ \mbox{Voltage supply for 5 V/12 V/24 V pulse generators (sustained-short-circuit-proof)} \\ \mbox{Output current with} & 5 V: I_A \leq 0.25 A \\ & 12 V: I_A \leq 0.2 A \\ & 24 V: I_A \leq 0.2 A \\ & 24 V: I_A \leq 0.2 A \\ & 1put range: & 12 V/24 V: asymmetrical and differential \\ & 5 V: differential \\ \\ \mbox{Pulse generator as 13 mA current source: differential } \\ & Line termination (impedance 120\Omega), if selected \\ & max. input frequency \leq 300 \text{ kHz} \\ \end{array}$	A pulse generator input Voltage supply, output current, input range: as with IOB1 Inputs electrically isolated from 0 V (casing earth) by means of optocou- pler and voltage source.
		Functionality of SDCS-IOB-2x 3 different designs available: \bigcirc SDCS-IOB-21 inputs for 2448 V-; R _E = 4.7 kΩ \bigcirc SDCS-IOB-22 inputs for 115 V AC; R _E = 22 kΩ \bigcirc SDCS-IOB-23 inputs for 230 V AC; R _E = 47 kΩ Terminals Sorrow element terminals up to more 4 mm ² errors continued area
Û	8 digital inputs The functions can be selected by means of the software Input voltage: 08 V \Rightarrow "0 signal", 1660 V \Rightarrow "1 signal" Time constant of smoothing capacitor: 10 ms R _E = 15 kΩ The signal refers to the unit casing potential Auxiliary voltage for digital inputs: +48 V-, \leq 50 mA, sustained-short- circuit-proof	 B digital inputs A digital inputs The functions can be selected by means of the software The signal status is indicated by an LED all isolated by means of optocouplers INDB-21/08 V ⇒ "0 signal", 1860 V ⇒ "1 sig." INDB-22:020 V ⇒ "0 signal", 60130 V ⇒ "1 sig." INDB-22:040 V ⇒ "0 signal", 90250 V ⇒ "1 sig." Filter time constant: 10 ms (channels 16), 2 ms (channels 7+8) Auxiliary voltage for digital inputs +48 V-, ≤ 50 mA, sustained- short-circuit-proof: referenced to the unit casing patential
Û	7+1 digital outputsThe function can be selected by means of the software7 outputs: relay driver with free-wheel $\leq 160 \text{ mA}$, short-circuit-proof1 relay output - on power pack board SDCS-POW-1 (N.O. contactelement: AC: $\leq 250 \text{ V} / \leq 3 \text{ A} / \text{DC}$: $\leq 24 \text{ V} / \leq 3 \text{ A}$ or $\leq 115/230 \text{ V} / \leq 0.3 \text{ A}$)protected by VDR component.	 A digital outputs The functions can be selected by means of the software The signal status is indicated by an LED 6 of them potential-isolated by relay (N.O. contact element: AC: ≤250 V/ ≤3 A / DC: ≤24 V/ ≤3 A or ≤115/230 V/ ≤0.3 A), protected by VDR component. 2 of them potential-isolated by optocoupler, protected by Zener diode (open collector) 24 V DC external, I_A ≤ 50 mA each.

The digital and analogue inputs can be extended by means of the SDCS-IOE1 board. This is in addition to the a.m. solutions.

 Pig. 2.5/5: Additional inputs via SDCS-IOE1

 Analogue inputs:
 extended

 Digital inputs:
 all isolated by means of optocoupler, the signal status is indicated by LED

 current source for:
 PT100/PTC element

Description of input signals SDCS-IOE-1

Mechanical system always external, outside the basic unit							
Terminals Screw-type terminals for finely stranded wires up to max. 2.5 mm ² cross-sectional area							
Functionality ⇒ 7 digital inputs The functions can be selected by means of the software The signal status is indicated by an LED Input voltage: 08 V ⇒ "0 signal", 1631 V ⇒ "1 signal" Isolated from the unit's electronics by optocouplers Potentialwise arranged in two groups (DI 9DI 12 and DI 13DI 15) Time constant of smoothing capacitor: 2 ms ⇒ 2 analogue inputs All as differential inputs; common-mode range ±40 V Range -10 V/-20 mA0+10 V/+20 mA; 4 20 mA unipolar R _E = 200 kΩ /500 Ω /500 Ω Resolution: 11 bit + sign Input 2: range as for input 1,							
 in addition -1 V/-2 mA0+1 V/+2 mA, then common-mode range ±40 V, R_E = 20 kΩ Current source for PT 100 or PTC element evaluation I_A = 5 mA / 1.5 mA The signals are referenced to the unit casing potential 							

Please note:

Unless otherwise stated, all signals are referenced to a 0 V potential. Within the power pack subassembly (SDCS-POW-1) and on all other PCBs, this potential is firmly connected to the unit's casing by means of plating-through at the fastening points.

Panel (control and display panel)

The CDP 312 control and display panel communicates with the power converter via a serial connection in accordance with the RS 485 standard at a transmission rate of 9.6 kBaud. It is an option for the converter unit. After completion of the commissioning procedure, the panel is not necessarily required for diagnostic routines, because the basic unit incorporates a 7-segment display for indicating errors, for example. **Equipment**

• 16 membrane pushbuttons in three function groups

- LCD display comprising four lines with 20 characters each
- Language: German, English, French, Italian, Spanish
- Options for the CDP 312:
 - cable, separated from the power converter for utilization
 - kit for mounting the panel in the switchgear cubicle door

Fig. 2.5/6: Function keys and various displays on the removable control and display panel. The panel can also be used to load the same program on different power converters.

II D 2-15

Serial interface

There are various serial interface options available for operation, commissioning and diagnosis, plus for controlling. According to the description in the previous section, there is a serial connection to the control and display panel (X33:/X34: on the SDCS-CON-2 control board). Installing the optional SDCS-COM-5 communication board on the SDCS-CON-2 control board creates additional serial interfaces.

Both interfaces use optical fibres. One channel is used for drive/PC interfacing. The other for fieldbus module interfacing. All three serial interfaces are independent from each other.

Fig. 2.5/7: Options for serial communication

Operation by PC

components required:

- SDCS-COM-5 as an option
- PCMCIA interface SNAT 621/622 (Laptop) or SNAT 608 ISA board (Desktop)
- plastic optical fibre for distances up to 20 m (longer distances on request)

Functionality:

 CMT/DCS 500 software package for commissioning, diagnosis, maintenance and trouble-shooting; point-to-point connection as well

System requirements/recommendation:

- PC with 386 processor or higher
- hard disk with 1MB free memory. Each graph recorded requires 500 kB of free memory.
- VGA monitor
- Windows 3.1, 3.11, 95, 98
- 3 1/2" floppy disk drive
- PCMCIA or ISA card slot

In addition to the options provided by the CDP 312 control and display panel, there are further functions available, and these are described on the following page.

Control

components required:

- plastic optical fibre for distances up to 20 m (longer distances on request)
- field bus module NxxA-0x

Functionality:

Depends on the field bus module used, interface e.g. to:

- PROFIBUS with NPBA-02/12 (1.5 / 12 MB)
- AC 31 with NCSA-01 (SW 1.6)
- CanOpen with NCAN-02
- DeviceNet with NDNA-02
- MODBUS with NMBA-01
- MODBUS + with NMBP-01
- AC70/FCI
- further modules on request

You will find more detailed information on data exchange in the specific fieldbus module documentation.

Please note:

For more information of the CMT/DCS 500 software package there is an own documentation available describing the possibilities and the handling of the program.

Operation by PC (continued)

The program incorporates nine different function windows which can be used to alter the application program on-line, to monitor the drive's functionality, to alter the parameter values, to control the drive and to monitor its status. You will find below a brief description of the individual menu options, some of which are shown as a screen display to serve as examples.

Connect

This option is used to trigger special functions such as establishing the connection to the power converter or configuring the program.

ParSig

The parameter and signal display enables the user to view parameter or signal values in a table and to alter them. One of the functions available for the user is to allocate each parameter or each signal to self-defined groups. He/she can then select only special groups, and trace or alter the values of parameters or signals in this group.

-	- CMT / DCS 500 3.2 - Single Drive 🔶							
<u>C</u> onnect	ParSig DLog	<u>D</u> iagrams <u>T</u> rending	DrvFuncs F	aults <u>E</u> xit	Help			
Co	mment:							
ID	Label	Current	D	efault				
ANALOG 3	ENPUTS:					+		
101	AITAC CONV HOL	DE +/-10V OR +/-:	20mA DISA	BLED				
102	AITAC HIGH VAL	LUE 2250.0 rpm	2250	.0 rpm				
103	AITAC LOW VAL	UE -2250.0 rpm	-225	0.0 rpm				
104	AI1 CONV MODE	+/-10V OR +/-:	20mA +/-1	0V OR +/-2	0mA			
105	AI1 HIGH VALU	E 1500.0 rpm	1500	.0 rpm				
106	AI1 LOW VALUE	-1500.0 rpm	-150	0.0 rpm				
107	AI2 CUNU MUDE	+/-100 UR +/-3	20ma DISA	BLED				
108	AI2 HIGH VALUE	E 2000	2000					
109	AI2 LOW VALUE	-2000	-200	0				
110	HI3 CUNV MUDE	DISHBLED	DI2H	BLED				
111	ATO LON HOLUE	2000	2000	0				
112	ATE CONUL MODE		-200					
110	ATA HIGH HALH	F 2000	2000	DLLD				
-101 AIT	C CONV MODE					<u> </u>		
	C CONV MODE				OK Aore			
,	MODE: ON-LINE	Class	ing Grou Relat	ip Sel Ne ed Grp Pre	xt Group v Group			

Dlog

The DC power converter is able to continuously log up to six signals and to store them in non-volatile memory from a trigger condition to be set (level, pre-event and post-event history). These values can then be read out by the program in chronological sequence and processed further. They are available as a table or as a diagram, in forms similar to those with the "Trending" option, and can also be printed out in these forms.

DrvFuncs

This display provides the same display and the same pushbuttons for the user as the CDP 312 display and control panel. For that reason, the drive functions are also identical.

Selection Buttons
++ + Ent
L/R Res Ref Start

Diagrams

This window shows the function block diagram created by means of the GAD program. If necessary, the user can also use this window to view the values of selected parameters or connections.

Trending

This window can be used to trace the signal characteristics of specified parameters or signals. Up to six parameters or signals can be monitored. The window shows the values in a curve diagram.

Faults

This display shows the current fault messages last fed into the fault logger in chronological sequence.

=	CMT / DCS 500 3.2 - Single Drive 🗢 🗢								
<u>C</u> onnect	<u>P</u> arSig	DLog	<u>D</u> iagrams	Trending	DrvFuncs	<u>Faults</u>	<u>E</u> xit	<u>H</u> elp	
Cor	nment:								
Tim	e	Code	Desci	iption					
22:52	53.62	-102	-Energen	cy stop				*	
22:52	53.20	99	Reset						
22:50	47.20	102	+Energen	cy stop					
22:39	45.46	110	+System	restart					
22:39	:45.22	142	+Aux.und	erv.alarm					
22:37	54.66	110	+System	restart					
22:37	54.42	142	+Aux.und	erv.alarm					
20:23	:16.16	99	Reset						
20:23	:13.26	99	Reset						
20:23	:11.46	99	Reset						
20:23	:09.16	99	Reset						
20:23	:07.56	99	Reset						
20:23	: 06 . 06	99	Reset						
20:23	84.66	99	Reset						
20:23	83.26	99	Reset						
20:23	01.46	99	Reset						
20:22	:59.26	99	Reset						
20:22	56.96	99	Reset						
20:22	55.36	99	Reset						
20:22	:53.16	99	Reset						
20:22	51.38	-102	-Energen	cy stop					
20:22	50.96	99	Reset	- •					
20:21	25.28	138	+Init va	lues read				*	

Exit

Quitting the program. **Help**

Descriptions of the parameters.

Line reactors

for armature (DCS 50xB) and field (DCF 50xB) supply

When power converters are operated with thyristors, the line voltage is short-circuited during commutation from one thyristor to the next. This operation causes voltage dips in the mains. For the connection of a power converter system to the mains, a decision is made between the following configurations:

You will find further information in publication: *Technical Guide chapter: Line reactors*

Configuration A

When using the power converter, a minimum of 1% impedance is required to ensure proper performance of the snubber circuit. A line reactor can be used to meet this minimum impedance requirement. The value must therefore not drop below 1% u_k (relative imped-

ance voltage). It should not exceed 10% $u_{_{\rm k}\!}$ due to considerable voltage drops which would then occur.

Configuration B

If special requirements have to be met at the connecting point, different criteria must be applied for selecting a line reactor. These requirements are most often defined as a voltage dip in percent of the nominal supply voltage.

The combined impedance of Z_{Line} and Z_{LR} constitute the total series impedance of the installation. The ratio be-

tween the line impedance and the line reactor impedance determines the voltage dip at the connecting point. In such cases line chokes with an impedeance around 4% are often used.

Configuration C

If an isolation transformer is used, it is often possible to comply with certain connecting conditions per Configuration B without using an additional line reactor. The condition described in Configuration A will then likewise be satisfied, since the u_k is >1 %.

With reference to the power converter:

- The line reactors listed in the table (2.6/1)
- have been allocated to the units nominal current
- are independent of converter's voltage classification; at some converter types the same line choke is used up to 690 V line voltage
- are based on a duty cycle
- can be used for DCS 500B as well as for DCF 500B converters
- The duty cycle taken into account varies from line choke to line choke and is between 80% and 100%. If the converter is sized on a duty cycle or is used for a drive running with high load all time like extruders do next steps to check the overall selection:
 - Calculate the ${\rm I}_{\rm DCrms}$ based on the duty cycle and the motor current
 - Multiply the I_{me} of the line choke by 1.2
 - In case $I_{\mbox{\tiny rms}}$ is higher than $I_{\mbox{\tiny DCrms}}$ the combination is okay
- In case I_{rms} is lower than I_{DCrms} take the line choke used for the next bigger converter with the same voltage classification
- If the line choke should be used for a DCF 500B converter make sure the nominal field current doesn't exceed the thermal current of the choke. In case the field current is higher than I_{rms} of the line choke take the one used for the next bigger converter with the same voltage classification
- For units >2000 A or >690 V, we recommend using one isolation transformer per power converter as configuration C.

Line reactors L1

DCS Type	Line choke	Fig.	Line choke	Design
50/60 Hz	configur. A		configur. B	r ig.
DCS50xB0025-41/51	ND01	1	ND401	4
DCS50xB0050-41/51	ND02	1	ND402	4
DCS50xB0050-61	ND03	1	on request	-
DCS50xB0075-41/51	ND04	1	ND403	5
DCS50xB0100-41/51	ND06	1	ND404	5
DCS50xB0110-61	ND05	1	on request	-
DCS50xB0140-41/51	ND06	1	ND405	5
DCS50xB0200-41/51	ND07	2	ND406	5
DCS50xB0250-41/51	ND07	2	ND407	5
DCS50xB0270-61	ND08	2	on request	-
DCS50xB0350-41/51	ND09	2	ND408	5
DCS50xB0450-41/51	ND10	2	ND409	5
DCS50xB0450-61	ND11	2	on request	-
DCS50xB0520-41/51	ND10	2	ND410	5
DCS50xB0680-41/51	ND12	2	ND411	5
DCS501B0820-41/51	ND12	2	ND412	5
DCS502B0820-41/51	ND13	3	ND412	5
DCS50xB1000-41/51	ND13	3	ND413	5
DCS50xB0903-61/71	ND13	3	ND413	5
DCS50xB1203-41/51	ND14	3	on request	-
DCS50xB1503-41/51/61/71	ND15	3	on request	-
DCS50xB2003-41/51	ND16	3	on request	-
DCS501B2003-61/71	ND16 *	3	on request	-

* with forced cooling

Table 2.6/1: Line reactors (for more information see publication Technical Data)

Fig. 5

II D 2-19

Aspects of fusing for the armature-circuit and field supplies of DC drives

General

Unit configuration

Protection elements such as fuses or overcurrent trips are used whenever overcurrents cannot entirely be ruled out. In some configurations, this will entail the following questions: firstly, at what point should which protective element be incorporated? And secondly, in the event of what faults will the element in question provide protection against damage?

You will find further information in publication: **Technical Guide** chapter: Aspects for fusing

Conclusion for the armature supply

Due to cost saving standard fuses are used instead of the more expensive semiconductor fuses at some applications. Under normal and stable operating conditions, this is understandable and comprehensible, as long as **fault scenarios can be ruled out**.

In the **event of a fault**, however, the saving may cause very high consequential costs. Exploding power semiconductors may not only destroy the power converter, but also **cause fires**.

Adequate protection against short-circuit and earth fault, as laid down in the EN50178 standard, is possible only with appropriate semiconductor fuses.

Complies with Basic Principles on:

- 1 Explosion hazardyes2 Earth faultyes
- 3 "Hard" networks yes
- 4 Spark-quenching gap yes
- 5 Short-circuit yes
- 6 2Q regenerative yes

Conclusion for the field supply

Basically, similar conditions apply for both field supply and armature-circuit supply. Depending on the power converter used (diode bridge, half-controlled bridge, fully controlled 4-quadrant bridge), some of the fault sources may not always be applicable. Due to special system conditions, such as supply via an autotransformer or an isolating transformer, new protection conditions may additionally apply.

The following configurations are relatively frequent:

Fig 2.6/2 Configurations for field supplies

The F3.2 and F3.3 fuse types serve as line protectors and **cannot protect the field supply** unit. Only pure HRC fuses or miniature circuit-breakers may be used. Semiconductor fuses would be destroyed, for example, by the transformer's starting current inrush.

In contrast to the armature-circuit supply, fuses are **never** used on the DC side for the field supply, since a fuse trip might under certain circumstances lead to greater damage than would the cause tripping the fuse in the first place (small, but long-lasting overcurrent; fuse ageing; contact problems; etc.).

If conditions similar to those for armature-circuit supply are to apply, like for example protection of the field supply unit and the field winding, then a semiconductor fuse (super-quick-acting F3.1) must be used.

Fuses F1 and fuse holders for armature and 3-phase field supply (DCS 501B /DCS 502B - DCF 501B/DCF 502B)

The converter units are subdivided into two groups:

- Unit sizes C1 and C2 with rated currents up to 1000 A require external fuses.
- In unit sizes A5 and C4 with rated currents of 900 A to 5150 A, the semiconductor fuses are installed internally (no additional external semiconductor fuses are needed).

The semiconductor fuses for the C1 and C2 unit sizes are blade fuses except 170M6166. The relevant data is listed in the table below. The fuses' type of construction requires special fuse holders.

Type of converter	Manufacturer / Type	Fuse holder
DCS50xB0025-41/51	Bussman 170M 1564	OFAX 00 S3L
DCS50xB0050-41/51	Bussman 170M 1566	OFAX 00 S3L
DCS50xB0050-61	Bussman 170M 1566	OFAX 00 S3L
DCS50xB0075-41/51	Bussman 170M 1568	OFAX 00 S3L
DCS50xB0100-51	Bussman 170M 3815	OFAX 1 S3
DCS50xB0110-61	Bussman 170M 3815	OFAX 1 S3
DCS50xB0140-41/51	Bussman 170M 3815	OFAX 1 S3
DCS50xB0200-41/51	Bussman 170M 3816	OFAX 1 S3
DCS50xB0250-41/51	Bussman 170M 3817	OFAX 1 S3
DCS50xB0270-61	Bussman 170M 3819	OFAX 1 S3
DCS50xB0350-41/51	Bussman 170M 5810	OFAX 2 S3
DCS50xB0450-41/51/61	Bussman 170M 6811	OFAS B 3
DCS50xB0520-41/51	Bussman 170M 6811	OFAS B 3
DCS50xB0680-41/51	Bussman 170M 6813	OFAS B 3
DCS50xB0820-41/51	Bussman 170M 6813	OFAS B 3
DCS50xB1000-41/51	Bussman 170M 6166	3x 170H 3006

Table 2.6/2: Fuses and fuse holders (details see Technical Data)

Fuses F3.x and fuse holders for 2-phase field supply

Depending on the protection strategy different types of fuses are to be used. The fuses are sized according to the nominal current of the field supply device. If the field supply unit is connected to two phases of the network, two fuses should be used; in case the unit is connected to one phase and neutral only one fuse at the phase can be used. Table 2.6/3 lists the fuses currents with respect to table 2.6/2.

The fuses can be sized according to the maximum field current. In this case take the fuse, which fits to the field current levels.

Field conv.	Field current	F3.2	F 3.3
SDCS-FEX-1 SDCS-FEX-2	I _F ≤ 6 A	OFAA 00 H10	10 A
SDCS-FEX-2	I _F ≤ 12 A	OFAA 00 H16	16 A
SDCS-FEX-2 DCF 503A DCF 504A	l _F ≤ 16 A	OFAA 00 H25	25 A
DCF 503A DCF 504A	$I_{\rm F} \le 30$ A	OFAA 00 H50	50 A
DCF 503A DCF 504A	$I_{\rm F} \le 50$ A	OFAA 00 H63	63 A
Type of prote	ction elements	LV HRC type for 690 V; fuse hold. OFAX 00	circuit breaker for 500 V or 690 V

Table 2.6/3: Fuses and fuse holders for 2-phase field supply

Transformer T3 for field supply to match voltage levels

Fig. 2.6/3: T3 autotransformer

The field supply units' insulation voltage is higher than the rated operating voltage (see Chapter *Field supplies*), thus providing an option in systems of more than 500 V for supplying the power section of the converter directly from the mains for purposes of armature supply, and using an autotransformer to match the field supply to its rated voltage. Moreover, you can use the autotransformer to adjust the field voltage (SDCS-FEX-1 diode bridge) or to reduce the voltage ripple. Different types (primary voltages of 400...500 V and of 525...690 V) with different rated currents each are available.

Field converter type ≤500 V; 50/60 Hz	for field current I _F	Transformer type 50/60 Hz
		U _{prim} = ≤ 500 V
SDCS-FEX-1	≤6 A	T 3.01
SDCS-FEX-2	≤12 A	T 3.02
SDCS-FEX-2	≤16 A	T 3.03
DCF503A/4A-0050	≤30 A	T 3.04
DCF503A/4A-0050	≤50 A	T 3.05
		U _{prim} = ≤600 V
SDCS-FEX-1	≤6 A	T 3.11
SDCS-FEX-2	≤12 A	T 3.12
SDCS-FEX-2	≤16 A	T 3.13
		U _{prim} = ≤690 V
DCF503A/4A-0050	≤30 A	T 3.14
DCF503A/4A-0050	≤50 A	T 3.15

Table 2.6/4: Autotransformer data (details see Technical Data)

Commutating reactor

When using the SDCS-FEX-2 field power converter, you should additionally use a commutating reactor because of EMC considerations. A commutating reactor is not necessary for the SDCS-FEX-1 (diode bridge). With DCF 503A/504A field power converters, it is already installed.

Converter ≤500 V; 50/60 Hz	Reactor
SDCS-FEX-2	ND 30

Table 2.6/4: Commutating reactor (for more information see publication *Technical Data*)

Electronic system / fan supply

The converter unit requires various auxiliary voltages, e.g. the unit's electronics require 115 V/1-ph or 230 V/1-ph, the unit fans require 230 V/1-ph or 400 V/690 V/3-ph, according to their size. The T2 auxiliary transformer is available to supply the unit's electronic system and the single-phase fans.

Auxiliary transformer T2

Input voltage: 380...690 V/1-ph; 50/60 Hz Output voltage: 115/230 V/1-ph

Fig. 2.6/4: T2 auxiliary transformer

Earth fault monitor

An earth fault monitor is provided by the standard software. If needed, the analogue input AI4 has to be activated, a current signal of the three phase currents should be supplied to AI4 by a current transformer. If the addition of the three current signal is different from zero, a fault is indicated (for more information, see publication *Technical Data*).

EMC filters

You will find further information in publication:

Technical Guide

chapter: EMC Compliant Installation and Configuration for a Power Drive System

The paragraphs below describe selection of the electrical components in conformity with the EMC Guideline.

The aim of the EMC Guideline is, as the name implies, to achieve electromagnetic compatibility with other products and systems. The guideline ensures that the emissions from the product concerned are so low that they do not impair another product's interference immunity.

In the context of the EMC Guideline, two aspects must be borne in mind:

• the product's interference immunity

• the product's actual emissions

The EMC Guideline expects EMC to be taken into account when a product is being developed; however, EMC cannot be designed in, it can only be quantitatively measured.

Note on EMC conformity

The conformity procedure is the responsibility of both the power converter's supplier and the manufacturer of the machine or system concerned, in proportion to their share in expanding the electrical equipment involved.

II D 2-24

For compliance with the protection objectives of the German EMC Act (EMVG) in systems and machines, the following EMC standards must be satisfied:

Product Standard EN 61800-3

EMC standard for drive systems (**P**ower**D**rive**S**ystem), interference immunity and emissions in residential areas, enterprise zones with light industry and in industrial facilities.

This standard must be complied with in the EU for satisfying the EMC requirements for systems and machines!

In cases where the product standard is not applied, the generic standards EN 50081 and EN 50082 are sometimes adduced. For emitted interference, the following apply:

- **EN 50081-1** Specialised basic standard for emissions in **light industry** can be satisfied with special features (mains filters, screened power cables) in the lower rating range.
- EN 50081-2 Specialised basic standard for emissions in industry

For emitted interference, the following apply:

EN 50082-1 Specialised basic standard for interference immunity in residential areas

EN 50082-2 Specialised basic standard for interference immunity in **industry**. The EN 61000-6-2 standard replaces EN 50082-2. If this standard is satisfied, then the EN 50082-1 standard is automatically satisfied as well.

required.

Classification

The following overview utilises the terminology and indicates the action required in accordance with Product Standard

EN 61800-3

For the DCS 500B series,the limit values for emit-

ted interference are complied with, provided the action indicated is carried out. This action is based on the term *Restricted Obtainability* used in the standard (meaning a sales channel in which the products concerned can be placed in the stream of commerce only by suppliers, customers or users which individually or jointly possess technical EMC expertise).

For power converters without additional components, the following warning applies:

This is a product with restricted obtainability under IEC 61800-3. This product may cause radio interference in residential areas; in this case, it may be necessary for the operator to take appropriate action (see adjacent diagrams).

The field supply is not depicted in this overview diagram. For the field current cables, the same rules apply as for the armaturecircuit cables.

II D 2-25

Filter in a grounded line (earthed TN or TT network)

The filters are suitable for grounded lines only, for example in public European 400 V lines. According to EN 61800-3 filters are not needed in insulated industrial lines with own supply transformers. Furthermore they could cause safety risks in such floating lines (IT networks).

Three - phase filters

EMC filters are necessary to fulfill EN 50081 if a converter shall be run at a public low voltage line, in Europe for example with 400 V between the phases. Such lines have a grounded neutral conductor. ABB offers suitable three - phase filters for 400 V and 25 A....600 A and 500 V filters for 440 V lines outside Europe.

Lines with 500 V to 1000 V are not public. They are local lines inside factories, and they do not supply sensitive electronics. Therefore converters do not need EMC filters if they shall run with 500 V and more.

Converter type	Rated dc current	Filter type 1
		xxx = Voltage
	[A]	
DCS50xB0025-x1	25	NF3-xxx-25
DCS50xB0050-x1	50	NF3-xxx-50
DCS50xB0075-x1	75	NF3-xxx-64
DCS50xB0100-x1	100	NF3-xxx-80
DCS50xB0140-x1	140	NF3-xxx-110
DCS50xB0200-x1	200	NF3-xxx-320
DCS50xB0250-x1	250	NF3-xxx-320
DCS50xB0350-x1	350	NF3-xxx-320
DCS50xB0450-x1	450	NF3-xxx-600
DCS50xB0520-x1	520	NF3-xxx-600
DCS50xB0680-x1	610	NF3-500-600
DCS501B0820-x1	740	NF3-500-600
DCS502B0820-x1	820	NF3-690-1000
DCS50xB1000-x1	900	NF3-690-1000
DCS50xB0900-x1	900	NF3-xxx-1000
DCS50xB1200-x1	1200	NF3-xxx-1000
DCS50xB1500-x1	1500	NF3-xxx-1600
DCS50xB2000-x1	2000	NF3-xxx-1600
DCS50xB2500-x1	2500	NF3-xxx-2500

The filters 25... 2500 A are available for 440 V and 500 V, and the filters 600...2500 A are available for 690 V too.

1 The filters can be optimized for the real motor currents: $I_{\text{Filter}} = 0.8 \cdot I_{\text{MOT max}}$; the factor 0.8 respects the current ripple.

Converter type of dc current Filter type 1 field supply unit U_{max} = 250 V [A] SDCS-FFX-1 6 NF1-250-8 SDCS-FEX-2 8 NF1-250-8 SDCS-FEX-2 16 NF1-250-20 DCF 503A-0050 50 NF1-250-55 DCF 504A-0050 50 NF1-250-55 further filters for 12 NF1-250-12 NF1-250-30 30

1 The filters can be optimized for the real field currents: $I_{Filter} = I_{Field}$

Single - phase filters for field supply

Many field supply units are single - phase converters for up to 50 A excitation current. They can be supplied by two of the three input phases of the armature supply converter. Then a field supply unit does not need its own filter.

If the phase to neutral voltage shall be taken (230 V in a 400 V line) then a separate filter is necessary. ABB offers such filters for 250 V and 6...30 A.

3 How to engineer your drive

This chapter will give engineering **hints for different drive configurations**. In the first place converters are shown with all possible field supply options using wiring diagrams. Afterwards wiring diagrams are only shown for the most common configurations.

 Standard drive configuration using an internal field (see chapter 3.1)

The first configuration shows a speed controlled drive, using a very flexible external wiring and a build in field supply. With these components, it will fit to most drives of the smaller power range . This configuration can only be used together with construction types C1 - A5.

• Drive configuration using the internal field with reduced external components (see *chapter 3.2*)

The second configuration uses the same basic components as the one first, but a reduced external wiring schematics.

This configuration can only be used together with construction types C1 - A5.

• Standard drive configuration using an external halfcontrolled field (1-ph) (see *chapter 3.3*)

The third configuration uses the external wiring of the first one, but a more powerful and flexible field supply unit.

This configuration can be used together with all four construction types.

• Standard configuration using a fully-controlled field (3-ph) without armature converter (see *chapter 3.4*)

The fourth configuration shows a 3-phase field supply unit DCF 501/2 as stand alone unit.

This configuration shows a system in field current control mode and is used, if any type of existing DC-motor-field supply should be upgraded to a digital controlled one with all modern options like serial link etc.

There are other than field applications, magnets for example, which can be controlled with this equipment in current or voltage control mode without any additional components.

• Typical configuration for high power drives (see *chapter 3.5*)

The fifth configuration is used for quite big drives and is based on the diagrams used for configuration 3.3 and 3.4. Now all the components used for the other two are shown all together with all interconnections and interlockings needed. It is adapted to the converter construction types A5 and C4. Additional parts used to comply with UL standards are shown there as well.

Typical configuration for very high power drives using two parallel converter modules with symmetrical load share

Another configuration is the paralleling of converters. In this case converters of the same construction type (C4) are placed close to each other having connected their AC and DC terminals directly. They will behave like one bigger converter, which is not available as a single standard module. Such a system uses additional electronic boards for safety functions as well as interfacing and monitoring the converters.

More information on request.

Figure 3/1: Hard paralleling for high currents

Revamp of existing DC Equipment

If existing drives need modernization in some cases brand new drives shown in one of the first configurations will replace them. Because of space or economical reasons in some cases the existing power stack will remain and only the control part is upgraded. For these cases a construction kit based on electronic boards, normally used in DCS-C4 type converters, called DCR revamp kit, is available.

All options shown and explained in chapter 2 are suitable for this kit.

Additional boards enable this kit to be used for power stack constructions with up to four thyristors in parallel.

For more information please see manual *Selection, Installation and Start-up of Rebuild Kits.*

II D 3-1

Master-Follower-Applications

Drives connected in Master-Follower application

If motors have to run with the same speed / torque they are often controlled in a way called MASTER - FOLLOWER.

Drives used for such systems are of the same type and may differ in power, but will be supplied from the same network. Their number normally is not limited.

From the control point of view different conditions and demands need to be matched.

Examples are available on request from ABB Automation Products GmbH.

Figure 3/3: Application with two mechanically connected motors

Typical configuration for high power drives connected in Master-Follower application (two motors with one common shaft)

This configuration is often used, if two motors have to share the load half and half. They are mechanically fixed to each other via a gearbox or any other device. The converters are fed by a 12-pulse line transformer with separated secondary windings whose phase positions differ by 30°el.

Each motor is connected to its own converter and field supply. The converters exchange signals to make sure, that each motor takes half of the load.

This configuration delivers the same advantages concerning harmonics to the network as a standard 12- pulse application (see next item), but no T-reactor is needed.

Depending on the mechanical configuration commissioning personal needs some experience to adapt control accordingly.

- Typical configuration for high power drives connected in 12-pulse parallel Master-Follower application (see *chapter 3.6*)

This configuration shows a 12-pulse parallel drive system. It is an easy option to increase the power of a drive system. Depending on the engineering features, redundancy or emergency operation, if one converter fails, is made available.

Such drives use two identical 6-pulse converters and an especially designed choke called T-reactor or 12-pulse choke or interface reactor. The converters are fed by a 12-pulse line transformer with separated secondary windings whose phase positions differ by 30°el.

An example is the transformer configuration $\Delta/\lambda/\Delta$. This configuration gives a reduced level and a reduced order number of harmonics on the AC side. Only the 11th and 13th, the 23rd and 25th, the 35th a.s.o. are existing. The harmonics on the DC side are reduced too, which gives a higher efficiency. (The field supply is not shown on the wiring diagram 3.6. Depending on the field supply selected, the connections to the network, the interlocking and the control connections can be taken from any other wiring diagram showing the selected field supply.)

For more information, please see manual 12-pulse operation .

Figure 3/4: 12-Pulse application with two mechanically connected motors

Figure 3/5: 12-Pulse parallel application

3.1 Standard drive configuration using an internal field

Wiring the drive according to this diagram gives the most flexibility and offers the highest degree of standard monitoring functions done by the drive. There are no software modifications to adapt the drive to the external wiring.

Figure 3.1/1: Standard drive configuration using an internal field

· Selection of components

For this wiring diagram a DCS 500B converter construction type C1 / C2 / A5 (for C4 types, please use diagram 3.3 or higher) was selected together with a SDCS-FEX-1 or 2 field supply. This field supply can be used at line voltages up to 500V and will give field current up to 6 / 16A. For higher field currents, use the next bigger field supply unit DCF 503A/4A (wiring is shown at 3.3/1) or a 3-phase supply DCF 500B (wiring is shown at 3.5/2).

Power supply

- There are several components, which need a power supply:
 - Converter's power part:
 - 200 V to 1000 V, depending on converter type; see chapter 2 - Converter's electronics power supply: 115V or 230V, selectable by jumper
 - 230V 1-ph; see Technical Data - Converter cooling fan: 115 V to 500 V; together with an isolating / auto transformer up to 600 V; see chapter 2 and / or - Power part field supply: Technical Data - Motor cooling fan: depending on motor manufacturer / local demands depending on local demands
 - Relay logic:

The fuses F1 are used because the converter construction type C1 and C2 don't have them build in. All components, which can be fed by either 115/230 V have been combined and will be supplied by one isolating transformer T2. All components are set to 230 V supply or selected for this voltage level. The different consumers are fused separate. As long as T2 has the right tappings it can be connected to the power supply, used to feed the converter's power part. The same can be applied to the field supply circuit. There are two different types of matching transformers available. One can be used for supply voltages up to 500 V, the other for voltages up to 690 V. Do not use the 690 V primary tapping together with the SDCS-FEX-1/2 field supply! Depending on the motor fan voltage the power can be taken from the same source which is used for the converter's power part.

In case the power for A, D and E should be taken from the source, used for C, a decision must be made, whether the fuses F1 can be used for two reasons (protection of the power part + auxiliary power supply) or not. In addition it has to be checked, if the consumers can be supplied with this voltage wave form (see chapter Line Chokes) before connecting to C. If the converter is supplied directly by a high-voltage converter transformer at point C, additional conditions are to be considered during engineering of the drive (more details on request).

Control

The relay logic can be split into three parts:

a: Generation of the ON/OFF and START/STOP command:

The commands represented by K20 and K21 (latching interface relay) can be generated by a PLC and transferred to the terminals of the converter either by relays, giving galvanic isolation or directly by using 24V signals. There is no absolute need to use hardwired signals. These commands can be transferred via a serial link system too. Even a mixed solution can be realized by selecting the one or the other possibility for the one or the other signal.

b: Generation of control and monitoring signals:

The main power contactor K1 for the armature circuit is controlled by a dry contact located on the electronic power supply board. The status of this contactor is checked by the converter via binary input 3. The field supply contactor K3 is controlled by the auxiliary contact K11 connected to a binary output of the converter. The binary outputs consist of relay drivers, capable to give appr. 50 mA each and a current limitation of around 160 mA for all of the outputs. The contactors K6 and K8 control the fans of the drive system. They are controlled by the auxiliary contact K10 (similar to K11). In series with K6 is an auxiliary contact of the circuit breaker F6, which monitors the motor fan supply. For the converter fan supply monitoring the contact of the temperature detector is used in series with K8. Auxiliary contacts K6 and K8 are used and connected to the binary inputs 1 and 2 to monitor the status of the fan supplies by the converter. The function of K15 is described at the next point.

c: Stop mode beside ON/OFF and START/STOP:

This chapter tries to explain the reaction of the drive when the input named EMERGENCY_STOP or COAST_STOP is operated. Please take the external wiring used for this explanation as an example only!

For EMERGENCY STOP different preconditions have to be taken into account. This description focus on the functionality and does not take special safety conditions depending on the type of machine into account.

In this case, if emergency stop is hit, the information is transferred to the converter via binary input 5. The converter will act according to the function programmed (stop by ramp, current limit or coasting). If the converter will not manage to get the drive to standstill within the time set at K15, the auxiliary contact will switch off the control power. Because of this the main power contactors K1 and all the others will be switched off. This may result in failure of components (see Operating Instructions). This danger can be minimized by adding another time delay (grey-shaded parts below). By doing so another stop mode is available.

- Emergency stop signal initializes the ramp down function inside the converter in that way described before. If the drive comes to standstill within the time specified by K15, the converter will switch off the main power contactor K1. If the converter doesn't manage to get the drive to standstill within this time, K15 will start the function ELECTRICAL DISCONNECT with the time delay specified by K16. This information will be transferred to the converter to a free binary input. This input has to be connected to the COAST_STOP input of the drive logic. The COAST_STOP input forces the current down to zero as fast as possible. The delay time of K16 has to be slightly higher than the time needed by the current controller to get the current to zero. When the time K16 has elapsed the control voltage will be switched off and all power contactors will drop off.
- If no care should be taken to the speed of the drive the function of K16 can be initialized by the command ELEC-TRICAL DISCONNECT.

Sequencing

When the ON command is given to the converter and there is no error signal active, the converter closes the fan, field and main contactor, checks the supply voltage and the status of the contactors and without error messages, releases the regulators and starts waiting for the RUN command. When the RUN command is given, the speed reference is released and speed control mode is active (for more details, *see Software Description*).

3.2 Drive configuration using the internal field with reduced external components

Wiring the drive according to this diagram gives the same control performance, but a lower degree of flexibility and nearly no external monitoring functions done by the drive. The software has to be adapted to the external wiring.

Drive configuration using the internal field with reduced external components Figure 3.2/1:

Selection of components

same as figure 3.1/1

Power supply

There are several components, which need a power supply. Because of the wiring preconditions have to be taken into account:

- 200 V to 500 V, depending on converter type; see chapter 2 - Converter's power part:
 - use only 230 V possibility, selected by jumper
- Converter's electronics power supply: 230V 1-ph; see Technical Data
- Converter cooling fan: - Power part field supply:
- Motor cooling fan:
- Relay logic:

select the motor voltage acc. to the voltage used for the armature supply select the components for 230 V!

This configuration is basically identical to the one shown at figure 3.1/1. Please check the sizing of F1 for the additional load like field and motor fan. All components are either selected for 230V or set to 230V to be able to combine them and to supply them by an auxiliary power supply. The different consumers are fused separately.

200 V to 500 V; see chapter 2 and / or Technical Data

Control and safety

The relay logic can be split into three parts:

a: Generation of the ON/OFF and START/STOP command: same as figure 3.1/1

b: Generation of control and monitoring signals:

The main power contactor K1 is handled in the same way it was done at figure 3.1/1. The field and motor fan supply is picked up at the output of K1. So all 3 consumers are controlled in the same way.

The fan monitoring is not taken into consider	ration. Because of this these parameter settings have to be made:
Connection (default)	must be changed to:
910 from 10701	10908
911 from 10703	10908
906 from 10709	12502
Stop mode beside ON/OFF and START/STO	DP: Not taken into consideration!

Sequencing

С

When the ON command is given to the converter and there is no error signal active, the converter closes the fan, field and main contactor, checks the supply voltage and the status of the contactors and without an error messages, releases the regulators and starts waiting for the RUN command. When the RUN command is given, the speed reference is released and speed control mode is active (for more details, see Software Description).

3.3 Standard drive configuration using an external half-controlled field (1-ph)

Wiring the drive according to this diagram gives the most flexibility and offers the highest degree of standard monitoring functions done by the drive. There are no software modifications to adapt the drive to the external wiring.

Figure 3.3/1: Standard drive configuration using an external half-controlled field (1-ph)

Selection of components

For this wiring diagram a DCS 500B converter was selected together with a DCF 503A/4A field supply. If a DCF 504A is used for field supply, field reversal is possible. Then a DCS 501 (2-Q) for the armature supply is sufficient for low demanding drives. This field supply can be used at line voltages up to 500 V and will give field current up to 50 A. For higher field currents, a 3-phase supply DCF 500B (wiring is shown at 3.5/2).

Power supply

There are several components, which need a power supply:

- Converter's power part: 200 V to 1000 V, depending on converter type; see chapter 2
- Converter's electronics power supply:
- Converter cooling fan:
- 115 V or 230 V, selected by jumper

- Power part field supply:
- 230 V 1-ph; 400 V / 690 V 3-ph. at C4; see Technical Data
- 115 V to 500 V; together with an isolating/auto transformer up to 690 V; s. chap. 2 and/or Technical Data
- Electronics supply of field unit:
- 115 V to 230 V - Motor cooling fan: depending on motor manufacturer / local demands
- Relay logic:

This configuration is basically identical to the one shown at figure 3.1/1. In addition to figure 3.1/1 the field supply unit needs an electronic power supply, which is separately fused and taken from the 230V level, generated by T2. This field controller is controlled via a serial link, connected to X16: at the armature converter. The 690V primary tapping can be used together with this type of field supply!

depending on local demands

In case the power for A, D and E should be taken from the source, used for C, a decision must be made, whether the fuses F1 can be used for two reasons (protection of the power part + auxiliary power supply) or not. In addition it has to be checked, if the consumers can be supplied with this voltage wave form (see chapter Line Chokes) before connecting to C.

Control

The relay logic can be split into three parts as decribed in figure 3.1/1. Basically the logic shown at figure 3.2/1 could be used for this configuration. The size of the drive and/or it's value may be a criteria to select the logic according to figure 3.1/1 or to figure 3.2/1 or a combination of both. * Recomendation: Keep the control of K3 as shown, if a DCF 504A field supply is used!

Sequencing

same as figure 3.1/1

3.4 Standard configuration using a fully-controlled field (3-ph) without armature converter

The DCS 500B converter is used as a DCF 500B version in a non-motoric application. If the drive should be wired according to this example or to the one shown at figure 4-2 it has to be decided depending on the application and it's demands. The software structure has to be adapted and is described within the Operating Manual.

Figure 3.4/1: Standard configuration using a fully-controlled field (3-ph) without armature converter

• Selection of components

For this wiring diagram a DCF 500B converter construction type C1 or C2 was selected together with a DCF 506 unit, which serves as an overvoltage protection.

• Power supply

There are several components, which need a power supply:

- Converter's power part:
- Converters electronics power supply:
 - Converter cooling fan:
 - Relay logic:

200 V to 500 V, depending on converter type; see chapter 2

115 V or 230 V, selected by jumper

230 V 1-ph at C1 + C2; see Technical Data

depending on local demands

Basically according to figure 3.1/1. If the converter is supplied directly by a high-voltage converter transformer at point **C**, make sure that the high voltage switch is not opened, as long as field current flows. Additional conditions are to be considered during engineering of the drive (further information on request).

Control

- The relay logic can be split into three parts.
- a: Generation of the ON/OFF and START/STOP command: same as figure 3.1/1
- **b:** Generation of control and monitoring signals: Basically identical to figure 3.1/1.
 - Instead of the monitoring of the motor fan at binary input 2, which is not existing here but may exist as a cooling device for the inductance, the overvoltage protection DCF 506 is monitored by the same input. If any type of additional cooling device should be monitored extra function blocks can be used.
- c: Stop mode beside ON/OFF and START/STOP: Basically identical to figure 3.1/1 In this case it may be much more important to focus on a reduction of the current than on something else. If so, select coasting at the parameter EMESTOP_MODE.
- Sequencing
- same as figure 3.1/1

3.5 Typical configuration for high power drives

This wiring diagram has been generated to show the configuration for big drives with preferably more than 1000 A for the armature supply and a 3-phase field supply. For such drives the converter construction type A5 or C4 is used. The basic idea is identical to figure 3.1/1. This chapter gives information how the converter has been adapted to comply with the UL 508C standard.

Selection of components

For this wiring diagram a DCS 500B converter construction type A5 or C4 was selected together with a 3-phase field supply. This field supply can be used at line voltages up to 500 V and will give field current up to 540 A.

Power supply

There are several components, which need a power supply:

- Armature converter's power part: 200 V to 1000 V, depending on converter type; see chapter 2
 - Field converter's power part:
- 200 V to 500 V
- Converters electronics power supply: 115 V or 230 V, selected by jumper
- Converter cooling fan:
- 230V 1-ph at A5 (armature), C1 + C2 (field); 400 V / 690 V 3-ph. at C4 (armature); see Technical Data depending on motor manufacturer / local demands
- Motor cooling fan: - Relav logic:
- depending on local demands

This configuration is basically identical to the one shown at figure 3.1/1. The converters in use here are much bigger than before. They are equipped with fuses in the legs of the power part. That's the reason F1 is drawn within the square of the power part. If additional fuses are needed between supply transformer or not, has to be decided case by case. The field supply transformer T3 cannot be used for this configuration! See also power supply fig. 3.4/1 (fully-controlled field).

In case the power for A, B, D and E should be taken from the source, used for C, a decision must be made, whether the fuses F1 can be used for two reasons (protection of the power part + auxiliary power supply) or not. In addition it has to be checked, if the consumers can be supplied with this voltage wave form (see chapter Line Chokes) before connecting to C.

Figure 3.5/2: Typical configuration for high power drives (field unit DCF 500B)

Control

The relay logic can be split into three parts. Basically the logic shown at figure 3.2/1 could be used for this configuration. Because of the size of the drive and it's value the logic shown is recommended:

- a: Generation of the ON/OFF and START/STOP command: same as figure 3.1/1
- **b:** Generation of control and monitoring signals: same as figure 3.1/1 Each converter is monitoring his main contactor and his fan supply by himself.

This wiring diagram is the first one, showing a converter with a 3-phase fan. Because of this the hardware added to a converter to become compliant to UL 508C standard is described here. The grey-shaded areas at figure 3.5/1 (K8 / Converter fan) will be replaced by the figure shown right. A contactor with a 110 V coil has been added inside the converter. This coil is wired in series with the temperature sensor of the converter fan motor. If the fan is overloaded and the temperature sensor opens, the fan will be disconnected from the power supply at all three phases!

c: Stop mode beside ON/OFF and START/STOP:

It is recommended to use the additional safety provided by the use of the ELECTRICAL DISCONNECT function at such type of drives.

same as figure 3.1/1

Sequencing

It is basically the same than the one described for figure 3.1/1. When the ON command is given to the armature converter and there is no error signal active, the converter transfers this command via the serial link to the field converter. Afterwards, each converter closes the fan and main contactor, checks the supply voltage and the status of the contactors and without an error messages, releases the regulators. Then the same actions take place described at fig. 3.1/1.

3.6 Typical configuration for high power drives connected in 12-pulse parallel Master-Follower application

This wiring diagram can be used for 12-pulse parallel systems. It's is based on the configuration shown at firgure 3.1/1, too. Such a configuration can be done with two 25 A converters as well as with two 5150 A types. Most often this configuration is selected because of the total power. That's the reason why the wiring is already adapted to A5 (converter fan 1-phase) or C4 type converters. For the field supply, please take the field wiring at figure 3.5/2. If a smaller type is used, pick up the part of interest shown at one of the figures before.

Figure 3.6/1: Typical configuration for high power drives connected in 12-pulse parallel (MASTER)

Selection of components

See remarks above.

Power supply

There are several components, which need a power supply:

- Armature converter's power part:
- Converters electronics power supply:
- Converter cooling fan:
- Motor field supply:
- Motor cooling fan:
- Relay logic:

- 200 V to 1000 V, depending on converter type; see chapter 2
- 115 V or 230 V, selected by jumper 230V 1-ph at C1 + C2, A5; 400 V / 690 V 3-ph. at C4; see Technical Data
- see fig. 3.5/2
 - depending on motor manufacturer / local demands
- depending on local demands

This configuration is basically identical to the one shown at figure 3.5/1. The drive system is supplied by a 12-pulse transformer, which has got two secondary windings with a phase shift of 30 degrees. In this case a decision has to be made, how the auxiliary voltage levels **A**, **B**, **C**, **D**=field and **E** are generated. Attention has to be paid to the auxiliary voltage **A**:

- is the power of transformer T2 sufficient to supply all consumers? Consumers are electronics of all the converters, possibly fans of the two 12pulse converters and the field supply unit, main contactors, monitoring circuits, etc.
- is redundancy required, and/or flexibility to be able to operate master and follower independent of one another?
- If necessary several auxiliary voltage levels (A, A', A" etc.) should be constructed.

Figure 3.6/2: Typical configuration for high power drives connected in 12-pulse parallel (FOLLOWER)

• Power supply (continuation)

Afterwards it has to be decided how the different consumers will be protected against any type of failure. If circuit breakers are used, take their interruption capacity into account. Take the hints given before as a rough idea. See also power supply fig. 3.4/1 (fully-controlled field).

Control

The relay logic can be split into three parts. Basically the logic shown at figure 3.2/1 could be used for this configuration. Because of the size of the drive and it's value the logic shown is recommended:

a: Generation of the ON/OFF and START/STOP command:

same as figure 3.1/1 **b:** Generation of control and monitoring signals: same as figure 3.1/1

Each converter is monitoring his main contactor and his fan supply by himself.

c: Stop mode beside ON/OFF and START/STOP: same as figure 3.1/1

It is recommended to use the additional safety provided by the use of the ELECTRICAL DISCONNECT function at such type of drives.

Sequencing

The two converters supplying the armature exchange information via the flat cable connection X18: and the analog I/O. The field converter is controlled by the left converter based on a serial link. The basic signals ON/ OFF and START/STOP have to be fed to both converters. The actions caused by a command are similar to the description given for figure 3.5/1.

4 Overview of software (Version 21.2xx)

4.1 GAD Engineering-Program

GAD is a PC program for application programming. When the function-block library for converter equipped with software version 21.xxx was set up, an option was included for programming customized system packages for typical applications. The program features the following functions:

- application design and programming
- graphics editor for drawing and altering program diagrams
- program under MS-Windows, including the complete range of functions, such as window, zoom, copy, etc.
- user-controlled document depiction
- option for defining new documentation symbols
- recommended software and hardware: 486 PC, MS-Windows 3.x or Win95/98/NT, 4 MB RAM, 40 MB free hard disk space.

Standard function block

Applications function block

Fig. 4.1/1 Standard and Applications function blocks utilized with GAD

Please note:

For more information of the GAD PC program there is a manual available describing the possibilities and the handling of the program. The entire software is made up of connected function blocks. Each of these individual function blocks constitutes a subfunction of the overall functionality. The function blocks can be subdivided into two categories:

- Function blocks which are permanently active, are almost always in use; these are described on the following pages.
- Function blocks which, although they are available within the software as standard features, have to be expressly activated when they are needed for special requirements. These include, for example:

AND gates with 2 or 4 inputs, OR gates with 2 or 4 inputs, adders with 2 or 4 inputs, multipliers/dividers, etc.

or closed-control-loop functions, such as

integrator,

- PI controller,
- D-T1 element, etc.

All function blocks are characterized by input and output lines, equipped with numbers. These inputs/ outputs can likewise be subdivided into two categories:

Inputs for designating connections

When you want to alter connections between function blocks, proceed as follows:

- first select the input
- and then connect to output

All those connections possessing one dot each at their beginning and end can be altered.

Parameters for setting values

(such as ramp-up time / ramp-down time, controller gain, reference values and others)

For input / parameter selection, the following applies:

- Ignore the two right-hand digits; the remaining digits are the group and to be selected
- The two right-hand digits are the element and to be selected

DI7 10713 Group 107 element 13

The selection can be done with the control panel CDP312, using the (double-up-down) for the group and the (single-up-down) for the element or a PC-based tool program CMT/DCS500B.

The following pages correspond to what you get printed from the GAD tool with additional explanations based on software 21.233 which is identical with software 21.234.

Please note:

The following pages describe the as-delivered **wired** functionality. If a desired signal or a certain function seems to be missing, it can in most cases be implemented very easily:

- Either the desired signal does already exist, but due to its complexity is not easy to describe, which is why it appears in a signal listing given in the software description.
- Or it can be generated with available signals and additionally available function blocks.
- In addition to that please note that the functionality described on the next pages is available a second time for Motor Set 2. There are two parameter sets (groups 1 to 24) available within the drive's memory.
- The values of the parameters are displayed in GAD-Tool format.

3/8

Armature current controller

3/8

not used Al6 AI6:OUT+ 10119 AI6:OUT-10120 05 4 000 AI6:ERR 10121 P1 119 AI6 CONV MODE 0 P2 2000 120 AI6 HIGH VALUE 121 AI6 LOW VALUE P3 -2000 ST5

4/8

5/8

P6

2048

AI2 (10107)

CURRENT REFERENCE

2048

3615

ADJ REF1

6-PULSE

3604 IACT SLAVE-MASTER-

STSYN

[1209] Curr.Ref.2

Curr.Ref.1

Res. f.Commun 13622

SP -46 DO4

Monitoring

ST20

6/8

User events

Brake control

SP -32	
(10902) RESET	
(10503) TORQUE ACT	
+ 301 HOLD REF TREE OUT	10301
LOCAL LOCAL LOCAL LOCAL LOCAL LOCAL LOCAL LOCAL	10302
SPEED MONITOR (12201)	10303
	10304
	10305
P2 0 STOP DELAY	
P3 0 307 HOLD TORQ	
P4 0 308 EMESTOP BRAKE	
ST20	

Data logger

Additional signals

SF -13		
CONSTANTS	12501	CONST
-1	12502	CONST_0
1	12503	CONST 1
2	12504	CONST_1
10	12505	CONST_2
100	12506	CONST_100
1000	12507	CONST_1000
31416	12508	CONST_31416
EMF:100%	12509	EME MAX
TORQ:100%	12510	
TORQ:-100%	12511	TORO MAX N
CUR FLX VLT: 100%	12512	CONST 4095
CUR.FLX.VLT:-100%	12513	CONST_M4095
SPEED: 100%	12514	CONST_20000
SPEED:-100%	12515	CONST_M20000
FREE SIGNALS		
SIG1(SPEED RI	EF)	516
SIG2(SPEED STE	P)	SPEED_STEP
SIG3(TORQ. REF	A)	518
SIG4(TORQ. REF	B) 12	TORQ_REF_B
SIG5(TORQUE STE	EP)	TORQ_STEP
SIG6(LOAD SHAF	RE)	LOAD_SHARE
SIG7(FLUX RE	EF)	522
SIG8(EMF RE	EF)	523
SIG9(FORCE_FW	/D)	1024 10525
SIG10(FORCE RE	EV)	520
SIG11(CURR. RE	EF)	CUR_REF
SIG12(CURRSTE	EP)	CUR_STEP
ST		
SP-103 FLT	HNDL	
FAULT HANDLING		
FAULT WC	RD 1	11101
FAULT WC	RD 2	11102
	18D 3	11103
TAOLI WC	110 3	
		11107
LATEST F	AULT	11107
		11107
LATEST F	AULT	11107 11104 11105
LATEST F.	AULT RD 1 RD 2	11107 11104 11105
ALARM WC	AULT RD 1 RD 2 RD 3	11107 11104 11105 11106
LATEST F. ALARM WC ALARM WC ALARM WC LATEST AL	AULT PRD 1 PRD 2 PRD 3 ARM	11107 11104 11105 11106 11108
ALARM WC ALARM WC ALARM WC ALARM WC LATEST AL	AULT PRD 1 PRD 2 PRD 3 LARM	11107 11104 11105 11106 11108 11109

8/8

Speed reference handling

The speed reference for the ramp function generator is formed by the REF SEL blocks, which can be used to select the reference value required, the CONST REF block, which generates a maximum of 4 permanently settable reference values, the SOFTPOT block, which repro-duces the function of a motorpotentiometer in conjunction with the block RAMP GENERATOR, or by the Al1 block (analogue input 1).

The RAMP GENERATOR block contains a ramp function generator with 2 ramp-up and ramp-down ramps, 2 times for the S-curve, limitation for upper and lower limits, hold function and the functions for "Follow" the speed reference or "Follow" the speed feedback. There is a

special signal available for the treatment of acceleration and deceleration. The REF SUM block enables the output of the ramp function generator and a user-definable signal to be added.

Speed feedback calculation

This page depicts the conditioning routine for speed feedback and reference values. The AITAC block is used to read in the speed feedback from an analogue tacho The SPEED MEASUREMENT block processes the 3 possible feedback signals: analogue tacho, pulse generator or the converter's output voltage (SPEED_ACT_EMF) - conditioned by the EMF TO SPEED CALC block (if 2102=5, no field weakening function possible). Parameters are used for activating smoothing functions, selecting the feedback value and where applicable for setting the maximum speed. This parameter also serves for scaling the speed control

loop. The SPEED MONITOR block contains motor stalled - and tacho monitoring function, and inclusion stalled - and tacho monitoring function, and 2 settacompares a selected speed feedback value against overspeed, minimum speed and 2 settable thresholds.

The AO1 block represents a scalable analogue output.

Speed controller

The result is compared to the speed feedback from the SPEED MEASUREMENT block, using the SPEED ERROR block, and then passed to the speed controller. This block permits evaluation of the system deviation by means of a filter. Moreover, it is possible here to make a few settings which are needed for the "Window" operating mode. If the drive's speed feed-back is within a window around the reference value, then the speed controller is "bypassed" (provided "Window Mode" has been activated; the drive is controlled by means of a torque reference value at the TORQ REF HANDLING block). If the speed feedback is outside the window, the speed controller will be activated, and will lead the drive's actual speed back into the window.

The SPEED CONTROL block contains the speed controller with P, I and DT1 contents. For adaptation it receives a variable P-amplification.

Torque / current limitation

The "torque reference" generated by the speed controller is passed to the input of the CURRENT CONTROL block via the TORQ REF HANDLING block, and there it is converted into a current reference value and used for current regulation. The TORQUE / CURRENT LIMITATION block is used for generating the various reference values and limitations; this block contains the following functions: "speed-dependent current limitation", "gear backlash compensation", "generation of the values for static current limitation" and "torque limitation" The values for the various limitations are used again at some other points, for instance at the following blocks: SPEED CONTROL, TORQ REF HANDLING, TORQ REF SELECTION, and CURRENT CONTROL.

The AI2 block (analogue input 2) is used for reading in an analogue signal.

The TORQ REF SELECTION block contains a limitation with upstream addition of two signals, one of which can be routed through a ramp function generator; the other signal's evaluation can be dynamically altered using a multiplier.

The TORQ REF HANDLING block determines the drive's operating mode. When in position 1, the speed control mode has been activated, whereas in position 2 it is torque control mode (no closed-loop control since there is no "genuine" torque feedback available in the unit). In both cases, the reference value required comes from outside. Positions 3 and 4 are a combi-nation of the first two options stated above. Note that with position 3 the smaller value out of external torque reference and speed controller output is passed to the current controller whereas with position 4 it is the larger one. Position 5 uses both signals, corresponding to the method of functioning of "Window Mode".

Armature current controller

The CURRENT CONTROL block contains the current controller with a P and I content, plus an adaptation in the range of discontinuous current flow. This block also contains functions for current-rise limitation, the conversion of torque reference value into current reference value by means of the field crossover point, and some parameters describing the supply mains, and the load circuit.

At applications with high inductive load and high dynamic performance a different hardware is used to generate the signal current equal to zero. This hardware is selected by the CURRENT MONITOR block. The functions monitoring the current can now be adapted to the needs of the application. This gives easier handling and a higher degree of safety at high performance drives, like test rigs. The DCF mode can be activated via the block DCF FIELDMODE. The functionality within this

mode can be specified. If one of these functions is selected the current controller gets a different characteristic, the overvoltage protection DCF 506 is monitored and the field current reference via the X16: terminals is routed.

Line and motor data

The SETTINGS block serves for scaling all important signals, such as line voltage, motor voltage, motor current and field current. Parameters are available to adjust the control to special conditions like weak networks or interactions with harmonic filter systems. The lan-guage, in which you want to read your information on the panel, can be selected. The AO2 block represents a scalable analogue output.

Motor voltage controller The EMF CONTROL block contains the armature-circuit voltage controller (e.m.f. controller). It is based on a parallel structure comprising a PI controller and a precontrol feature, gener-ated with a characteristic of 1/x. The ratio between the two paths can be set. The output variable of this block is the field current reference value, which is produced from the flux reference value by another characteristic function using linearization. To enable the drive to utilize a higher motor voltage even with a 4 quadrant system two different field weakening points can be set by parameter.

Field current controller 1 and 2

Since a DCS power converter can control 2 field units, some of the function blocks are duplicated. This means that, depending on the mechanical configuration of the drives concerned, you can control 2 motors either in parallel or alternatively. The requisite configuration of the software structure can be generated by designing the blocks appropriately during the commissioning routine.

The MOTOR1 FIELD / MOTOR2 FIELD block reads in the field current reference value and all values which are specific to the field supply unit, and transfers these to the field power and back while for motor 1 and before the field power converter is scaled to suit its hardware, and performs field current regulation. The field current direction for motor 1 can be deter-mined using binary commands, while for motor 2 it can be generated in the course of an application upstream of the block concerned.

The MOTOR1 FIELD OPTIONS / MOTOR2 FIELD OPTIONS block controls the free-wheeling function in the event of line undervoltage, and the field current reversal function with field reversal drives (only for motor 1). In case of field reversal drives, there is an option for selectively influencing the moment of armature-circuit and field current reduction and buildup.

Binary in and outputs (standard) The DRIVE LOGIC block reads in various signals from the system via digital inputs DIx, processes them, and generates commands, which are outputted to the system via digital outputs DOx, e.g. for controlling the power converter's line contactor, the field-circuit contactor or contactors for various fans, or for outputting status messages.

Additional binary inputs

The Al3 and Al4 blocks represent another 2 analogue inputs which have as yet not been assigned to any particular functions. The blocks A15 and A16 represent another 2 additional inputs which are only active, if the board SDCS-IOE1 is connected. Another 7 digital inputs DI 9. DI15 are available with this additional hardware.

Inputs and outputs for fieldbus

A fieldbus module with serial communicated references should be used, if analogue and digital signals are not sufficient for the control of the drive (equipment for the installation of Profibus, CS31, Modbus etc. is available). This type of module is activated by means of the block FIELDBUS. The data transferred from the control to the converter are stored in the blocks DATASET1 and DATASET3 as 16-bit-information. Depending on the application the output pins of these blocks have to be connected to input pins of other blocks in order to transport the message. The same procedure is valid for blocks DATASET2 and DATASET4, if they are connected. These blocks are transmitting information from the converter to the control system.

Inputs and outputs for 12 pulse The converter is able to be configurated in a 12-pulse parallel application. In this case you need: two identical armature converters; one field supply unit; one T-reactor; communication via ribbon cable connected to X 18 of both converters The 12-PULSE LOGIC must be activated and guarantees a synchronous control of the MASTER and the SLAVE drive.

Maintenance

The MAINTENANCE block provides reference values and test conditions so as to enable all controllers to be adjusted in the power converter. If the panel is used as a meter in the cubicle door, an assortment of signals can be defined here.

Monitoring

The CONVERTER PROTECTION block monitors the armature circuit for overvoltage and overcurrent, and monitors the mains for undervoltage. It provides an option for reading in the total current of the 3 phases through an additional external sensor and monitoring it for "not equal to zero". Adaptations are made for rebuild applications, which keep the power part and

the fan, to sense overload conditions or fan failures. The MOTOR1 PROTECTION block, in its upper part, evaluates either the signal from an analogue temperature sensor, or from a Klixon. In its lower part, it computes motor heat-up with the aid of the current feedback value and a motor model, after which a message is outputted.

The MOTOR2 PROTECTION block works in the same way as the MOTOR1 PROTECTION block, but without Klixon evaluation.

User event

By using the block USER EVENT1 to USER EVENT6 six different messages are created, which are displayed as faults or alarms on the panel CDP312 as well as on the 7 segment display of the converter.

Brake control

The BRAKE CONTROL block generates all signals needed for controlling a mechanical brake.

Data logger

The block DATA LOGGER is able to record up to six signals. The values of these signals will be stored in a battery buffered RAM and are still available after a break down of the supply voltage. The time of recording can be influenced by a trigger signal, as well as the number of recorded values before and after the trigger signal. The function DATA LOGGER can be set with both panel and PC tool. For evaluation of the recorded values a PC tool is recommended.

Additional signals

By using the block FAULT HANDLING the faults and alarms of the drive are regrouped as 16-bit information. The CONSTANTS and FREE SIGNALS blocks can be used for setting limitations or special test conditions.

List of parameters (with column for customer-specific values)

No.	Parameter name	
101	AITAC_CONV_MODE	
102	AITAC_HIGH_VALUE	
103	AITAC_LOW_VALUE	
104	AI1_CONV_MODE	
105	AI1_HIGH_VALUE	
106	AI1 LOW VALUE	
107	AI2 CONV MODE	
108	AI2 HIGH VALUE	
109	AI2 LOW VALUE	
110	AI3 CONV MODE	
111	AI3_HIGH_VALUE	
112	AI3 LOW VALUE	
113	AI4_CONV_MODE	
114	AI4_HIGH_VALUE	
115	AI4_LOW_VALUE	
116	AI5_CONV_MODE	
117	AI5_HIGH_VALUE	
118	AI5_LOW_VALUE	
119	AI6_CONV_MODE	
120	AI6_HIGH_VALUE	
121	AI6_LOW_VALUE	
201	AO1.[IN]	
202	AO1_NOMINAL_V	
203	AO1_OFFSET_V	
204	AO1_NOMINAL_VAL	
205	AO2.[IN]	
206	AO2_NOMINAL_V	
207	AO2_OFFSET_V	
208	AO2_NOMINAL_VAL	
209	DATASET2.[IN1]	
210	DATASET2.[IN2]	
211	DATASET2.[IN3]	
212	DATASET4.[IN1]	
213	DATASET4.[IN2]	
214	DATASET4.[IN3]	
301	[HOLD_REF]	
302	[BR_RELEASE]	
303	[MIN_SP_IND]	
304	[ACT_BRAKE]	
305	START_DELAY	
306	STOP_DELAY	
307	HOLD_TORQ	
308	EMESTOP_BRAKE	
401	[TORQ_REF]	
402	[CURR_REF]	
403	[CURR_STEP]	
404	[BLOCK]	
405	REF_TYPE_SEL	
406	ARM_CURR_REF_SLOPE	
407	ARM_CURR_PI_KP	
408	AKM_CURR_PI_KI	
409	AKM_CONT_CURR_LIM	
410		
411		
412		
413	AKM_ALPHA_LIM_MIN	
414		
415		
416		
41/	ANVI_CURK_CLAMP	
418	CURRENT_RISE_MAX	
419		
420		
421		
501		
502		
503		
504		
505		
500		

No.	Parameter name	
507	U_SUPPLY	
508	U_NET_MIN1	
509	U_NET_MIN2	
510	PWR DOWN TIME	
511	ARM OVERVOLT I FV	
512		
513		
51/		
515		
515		
010		
51/	SET_I_CONV_A	
518	SET_U_CONV_V	
519	SEI_MAX_BR_IEMP	
520	SET_CONV_TYPE	
521	SET_QUADR_TYPE	
522	LANGUAGE	
523	CURR_ACT_FILT_TC	
524	PLL_CONTROL	
525	UNI_FILT_TC	
526	OFFSET_UDC	
527	CONV_TEMP_DELAY	
528	PLL_DEV_LIM	
601	DLOG.[IN1]	
602	DLOG.[IN2]	
603	DLOG.[IN3]	
604	DLOG.[IN4]	
605	DLOG.[IN5]	
606	DLOG.[IN6]	
607	DLOG.TRIGG COND	
608	DLOG.TRIGG VALUE	
609	DI OG TBIGG DELAY	
610	DLOG SAMPL INT	
611		
612		
613		
013 001		
001		
002		
803		
804		
805		
806		
807	DO4.[IN]	
808	DO4.[INV_IN]	
809	DO5.[IN]	
810	DO5.[INV_IN]	
811	DO6.[IN]	
812	DO6.[INV_IN]	
813	D07.[IN]	
814	DO7.[INV_IN]	
815	DO8.[IN]	
816	DO8.[INV_IN]	
901	[ON/OFF]	
902	[RUN1]	
903	[RUN2]	
904	[RUN3]	
905	[COAST_STOP]	
906	[EME_STOP]	
907	[RESET]	
908	START INHIBITI	
909		
910	IACK CONV FAN	
911	IACK MOTOR FANI	
912		<u> </u>
913		<u> </u>
Q1/		
015	MAIN CONT MODE	
016		
017		
010	LIVIL_STOF_WODE	ļ
310		
313		

r		
No.	Parameter name	
920	COMFAULT_MODE	
921	COMFAULT TIMEOUT	
1001		
1001		
1002		
1003	[EMF_REF]	
1004	[FLUX_REF_SEL]	
1005	[EMF_REF_SEL]	
1006	LOCAL_EMF_REF	
1007	EMF KP	
1008		
1000		
1009		
1010		
1011	EMF_REL_LEV	
1012	FIELD_WEAK_POINT	
1013	FIELD_CONST_1	
1014	FIELD_CONST_2	
1015	FIELD CONST 3	
1016	GENER EME REE	
1017	GENER WEAK POINT	
1017		
1101		
1101		
1102	USER_EVENI1.IYPE	
1103	USER_EVENT1.TEXT	
1104	USER_EVENT1.DLY	
1105	USER_EVENT2.[IN]	
1106	USER_EVENT2.TYPE	
1107	USER EVENT2.TEXT	
1108	LISEB EVENT2 DLY	
1100		
11109		
1110		
1111	USER_EVENT3.TEXT	
1112	USER_EVEN13.DLY	
1113	USER_EVENT4.[IN]	
1114	USER_EVENT4.TYPE	
1115	USER_EVENT4.TEXT	
1116	USER_EVENT4.DLY	
1117	USER_EVENT5.[IN]	
1118	USER_EVENT5.TYPE	
1119	USER_EVENT5.TEXT	
1120	USER EVENT5.DLY	
1121	USEB_EVENT6.[IN]	
1122		
1102		
1123		
1124		
1201	DRIVEMODE	
1202	CMT_DCS500_ADDR	
1203	DRIVE_ID	
1204	POT1_VALUE	
1205	POT2_VALUE	
1206	PERIOD_BTW.POT1/2	
1207	WRITE ENABLE KFY	
1208	WRITE ENARIE PIN	-
1200		
1209		L
1210		
1211	ACTUAL VALUE 2	
1212	ACTUAL VALUE 3	
1213	FIELDBUS NODE ADDR	
1214	MACRO_SELECT	
1215	DCF MODE	
1216	DI/OVP	
1217	OVP_SELECT	
1301	IF1 REF	
1302		
1202		
1003		
1304		
1305		
1306		
1307	F1_CURR_TC	
1308	F1_KP	
1309	F1_KI	

List of parameters (with column for customer-specific values)

No.	Parameter name	No.	Parameter name
1310	F1_U_AC_DIFF_MAX	1909	CONST_REF.REF4
1311	F1 U LIM N	1910	REFSEL.[IN1]
1312	 F1 M P	1911	BEESEL ISEL 11
1313		1012	
1214		 1012	
1014		 1913	
1315		 1914	
1310		 1915	REFSEL.[SEL3]
1317		1916	REFSEL.[ADD]
1318	REV.REV_HYS1	 1917	REFSEL.[REV]
1319	REV.REF_HYST	 1918	SOFTPOT.[INCR]
1320	REV.FLUX_TD	 1919	SOFTPOT.[DECR]
1321	F1_CURR_MIN_TD	1920	SOFTPOT.[FOLLOW]
1401	MOT1.[TEMP_IN]	1921	SOFTPOT.OHL
1402	MOT1.TEMP_ALARM_L	 1922	SOFTPOT.OLL
1403	MOT1.TEMP_FAULT_L	 1923	SOFTPOT.[ENABLE]
1404	[KLIXON_IN]	2001	ERR.[IN]
1405	MODEL1.SEL	2002	ERR.[STEP]
1406	MODEL1.CURR	2003	ERR.[WIN_MODE]
1407	MODEL1.ALARM_L	2004	ERR.WIN_SIZE
1408	MODEL1.TRIP_L	2005	ERR.FRS
1409	MODEL1.TC	2006	SPC.[IN]
1501	[F2_REF]	 2007	SPC.[RINT]
1502	F2 CUBB GT MIN I	2008	SPC [BAL]
1503	F2_OVERCUBB_L	2009	SPC [BALREF]
1504	F2_CUBB_TC	2010	SPC [BAL 2]
1505	F2_COTIT_TC	2011	SPC [BAL2BEF]
1506	F2_KI	2012	
1500	E2 IL AC DIEE MAX	 2012	
1507		2010	
1500		2014	SFU.KF
1509		2015	
1510		2010	
1011		 2017	
1600		 2010	
1002		 2019	
1603		2020	
1604		2021	
1605		2101	PEED MEAS MODE
1607		2102	SPEED SCALING
16007		 2103	SPEED_SCALING
1701		 2104	OFEED_ACI_FIN
1701		 2105	SPEED_ACI_FLI_FIF
1702		 2201	
1703		 2202	SPEED_LI
1704		 2203	SPEED_L2
1705	RAMP.[FOLL_ACT]	 2204	
1706	RAMP.[RES_OUT]	2205	STALL.SEL
1707	RAMP.[11/12]	2206	STALL.SPEED
1708		 2207	STALL TURQUE
1709		2208	
1/10		2209	
1/11		 2210	
1712	DECEL2	 2301	[SPC_TORQ_MAX]
1713	SMOOTH2	 2302	[SPC_TORQ_MIN]
1714	EMESTOP_RAMP	 2303	[TREF_TORQ_MAX]
1715	SPEEDMAX	 2304	[TREF_TORQ_MIN]
1716	SPEEDMIN	 2305	TORQ_MAX
1717	STARTSEL	 2306	TORQ_MIN
1718	ACC_COMP.MODE	2307	AKM_CURR_LIM_P
1719	ACC_COMP.TRMIN	2308	ARM_CURR_LIM_N
1720	RAMP.[SPEED_SET]	2309	MAX_CURR_LIM_SPD
1801	REF_SUM.[IN1]	 2310	MAX_CURR_LIM_N1
1802	REF_SUM.[IN2]	2311	MAX_CURR_LIM_N2
1901	CONST_REF.[ACT1]	2312	MAX_CURR_LIM_N3
1902	CONST_REF.[ACT2]	2313	MAX_CURR_LIM_N4
1903	CONST_REF.[ACT3]	2314	MAX_CURR_LIM_N5
1904	CONST_REF.[ACT4]	2315	GEAR.START_TORQ
1905	CONST_REF.DEF	2316	GEAR.TORQ_TIME
1906	CONST_REF.REF1	2317	GEAR.TORQ_RAMP
1907	CONST_REF.REF2	2401	SEL1.[TREF_A]
1908	CONST_REF.REF3	2402	SEL1.TREF_A FTC

No.	Parameter name	
2403	SELLIOAD SHARE	
2404	SEL1.[TBEE_B]	
2405	SEL1 TREE B SLOPE	
2406	SEL2 TREE SEL	
2407		
2409		
2400		
2409	TASKI EVEC OPDER	
2501	TASKI_EXEC_ORDER	
2502	TASK2_EXEC_ORDER	
2503	ER ADDI ENADIE	
2504	FB_AFFL_ENABLE	
2505	FB_TASK_LOCK	
2601-	Par. 1. appl. func. blocks	
2701-	Par. f. appl. func. blocks	
2801-	Par. f. appl. func. blocks	
2901-	Par. t. appl. tunc. blocks	
3001-	Par. t. appl. tunc. blocks	
3101-	Par. t. appl. tunc. blocks	
3201-	Par. t. appl. tunc. blocks	
3301-	Par. t. appl. tunc. blocks	
3401-	Par. f. appl. func. blocks	
3601	REV_DELAY	
3602	REV_GAP	
3603	FREV_DELAY	
3604	IACT_SLAVE	
3605	DIFF_CURRENT	
3606	DIFF_CURR_DELAY	
3607	INHIB_Logic	
3608	IREF0_Logic	
3609	Bridge_Logic	
3610	Reverse.Logic	
3611	[X18:09]	
3612	[X18:10]	
3613	[X18:11]	
3614	[X18:12]	
3615	ADJ_REF1	
3616	BC-Logic	
3701-	Par. f. appl. func. blocks	
3801-	Par. f. appl. func. blocks	
3901-	Par. f. appl. func. blocks	
4001	FIELDBUS_PAR.1	
4002	FIELDBUS_PAR.2	
4003	FIELDBUS_PAR.3	
4004	FIELDBUS_PAR.4	
4005	FIELDBUS_PAR.5	
4006	FIELDBUS_PAR.6	
4007	FIELDBUS_PAR.7	
4008	FIELDBUS_PAR.8	
4009	FIELDBUS_PAR.9	
4010	FIELDBUS PAR.10	
4011	FIELDBUS PAR.11	-
4012	FIELDBUS PAR.12	
4013	FIELDBUS PAR.13	
4014	FIELDBUS PAR.14	
4015	FIELDBUS PAR.15	

List of signals

No.	Falameter hame
10101	AITAC:OUT+
10102	
10103	AITAC.ERR AI1:OUT+
10105	Al1:OUT-
10106	AI1:ERR
10107	AI2:OUT+
10108	AI2:OUT-
10109	
10110	Al3:OUT-
10112	AI3:ERR
10113	Al4:OUT+
10114	Al4:OUT-
10115	
10117	AI5:OUT-
10118	AI5:ERR
10119	AI6:OUT+
10120	Al6:OUT-
10121	
10122	DATASETI:OUT2
10124	DATASET1:OUT3
10125	DATASET3:OUT1
10126	DATASET3:OUT2
10127	DATASET3:OUT3
10301	
10302	DECEL CMND
10304	LIFT_BRAKE
10305	BRAKE_RUN
10401	ARM_ALPHA
10402	ARM_DIR
10403	
10405	ARM_CURR_REF
10501	CONV_CURR_ACT
10502	ARM_CURR_ACT
10503	IORQUE_ACT
10504	U ARM ACT
10506	EMF_ACT
10507	BRIDGE_TEMP
10508	U_NET_DC_NOM_V
10509	
10510	U CONV V
10512	MAX_BR_TEMP
10513	
	CONV_TYPE
10514	
10514 10515 10601	CONV_TYPE QUADR_TYPE LINE_FREQUENCY
10514 10515 10601 10701	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01
10514 10515 10601 10701 10702	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02
10514 10515 10601 10701 10702 10703	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01
10514 10515 10601 10701 10702 10703 10704	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI2:02 DI2:01
10514 10515 10601 10701 10702 10703 10704 10705 10706	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02
10514 10515 10601 10701 10702 10703 10704 10705 10706	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI3:02 DI4:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:02 DI3:01 DI3:02 DI3:02 DI3:02 DI4:01 DI4:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI2:02 DI2:01 DI2:02 DI3:01 DI3:02 DI3:02 DI4:01 DI4:02 DI5:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10709	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI4:02 DI5:01 DI5:02 DI6:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI6:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10710 10711 10712 10713	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10709 10710 10711 10711 10712 10713 10714	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:01 DI4:02 DI5:01 DI5:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10710 10711 10711 10712 10713 10714 10715	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS D11:01 D12:02 D12:01 D12:02 D13:02 D13:02 D14:01 D14:02 D15:01 D15:02 D16:01 D16:02 D17:01 D17:02 D18:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02 DI10:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS D11:01 D11:02 D12:02 D12:01 D12:02 D13:01 D13:02 D14:01 D14:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D16:01 D16:02 D17:01 D17:01 D17:02 D18:02 D18:02 D19:01 D19:02 D10:01 D110:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS D11:01 D11:02 D12:01 D12:02 D12:01 D12:02 D13:01 D13:02 D14:01 D14:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D15:01 D15:02 D17:01 D17:02 D18:02 D19:01 D19:02 D19:01 D19:02 D11:01 D11:02 D11:01 D11:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI5:01 DI5:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01 DI8:02 DI9:01 DI9:02 DI10:01 DI10:02 DI11:01 DI11:02 DI12:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI5:01 DI5:02 DI6:01 DI6:02 DI7:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02 DI10:01 DI10:02 DI11:01 DI11:02 DI12:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10711 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI2:01 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI5:02 DI6:01 DI6:02 DI7:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02 DI10:01 DI10:02 DI11:01 DI11:02 DI12:01 DI12:02 DI13:01
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:01 DI4:02 DI5:01 DI5:02 DI6:01 DI6:02 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI8:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02 DI10:01 DI10:02 DI11:01 DI11:02 DI12:02 DI13:01 DI13:02
10514 10515 10601 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726	CONV_TYPE QUADR_TYPE LINE_FREQUENCY DLOG_STATUS DI1:01 DI1:02 DI2:01 DI2:02 DI3:01 DI3:02 DI4:02 DI4:02 DI5:01 DI5:02 DI6:01 DI5:02 DI6:01 DI6:02 DI7:01 DI7:02 DI8:01 DI8:02 DI8:01 DI8:02 DI9:01 DI9:02 DI9:01 DI9:02 DI10:01 DI10:02 DI10:01 DI11:02 DI11:02 DI12:01 DI12:02 DI13:01 DI13:02 DI14:01

No.	Parameter name		
10730	DI15:02		
10901	RDY_ON		
10902	RDY_RUNNING		
10903	RUNNING		
10904	FAULT		
10905	ALARM		
10906	LOCAL		
10907	EMESTOP_ACT		
10908			
10909	FIELD_ON		
10910			
10912	DYN BRAKE ON		
10913	MOTOR ACT		
10914	AUTO-RECLOSING		
10915	COMM_FAULT		
10916	RUN_DCF		
10917	RESET_DCF		
11001	FLUX_REF1		
11002	FLUX_REF_SUM		
11003	F_CURR_REF		
11101	FAULT_WORD_1		
11102	FAULT_WORD_2		
11103			
11104			
11105			
11100			
11108			
11109	OPERATING HOURS		
11201	COMMIS STAT		
11202	BACKUPSTOREMODE		
11203	FEXC STATUS		
11204	TC_STATUS		
11205	BC		
11206	SQUARE_WAVE		
11207	TEST_REF		
11208	TEST_RELEASE		
11209	TEST_REF_SEL		
11210	FEXC1_CODE		
11211	FEXC1_COM_STATUS		
11212	FEXC1_COM_ERRORS		
11213			
11214	FEXC2_COM_STATUS		
11216	CMT_COM_EBBOBS		
11217	CDI300 BAD CHAR		
11218	CNT_SW_VERSION		
11219	CNT_BOOT_SW_VERSION		
11220	FEXC1_SW_VERSION		
11221	FEXC2_SW_VERSION		
11222	PROGRAM_LOAD		
11301	F1_CURR_REF		
11302	F1_CURR_ACT		
11303			
11401			
11402	F2 CUBB BEE		
11501			
11601	MOT2 MEAS TEMP		
11602	MOT2 CALC TEMP		
11701	RAMP:OUT		
11702	ACCELCOMP:OUT		
11703	RAMP:SIGN		
11801	SPEED_REFERENCE		
11802	REF_SUM:OUT		
11803	LOCAL_SPEED_REF		
11901	CONST_REF:OUT		
11902	CONST_REF:ACT		
11903	REF_SEL:OUT		
11904			
11905			
12001			
12002			
12003	SPC:OUT		
12004	SPC:IN LIM		
12101	SPEED ACT EMF		
12102	SPEED ACT		
12103	SPEED_ACT_FILT		
12104	TACHO_PULSES		
12201	MIN SPEED		

No.	Parameter name
12202	SPEED_GT_L1
12203	SPEED_GT_L2
12204	OVERSPEED
12301	SPC_TORQMAX1
12302	
12303	
12304	
12306	TOROMIN2
12307	CURR_LIM_P
12308	CURR_LIM_N
12401	SEL1:OUT
12402	SEL2:OUT
12403	SEL2:TORQ/SPEED
12404	SEL2:IN_LIM
12502	CONSTANT -1
12503	CONSTANT 1
12504	CONSTANT 2
12505	CONSTANT 10
12506	CONSTANT 100
12507	CONSTANT 1000
12508	CONSTANT 31416
12509	EMF: 100%
12510	
12512	CUB.FLX.VLT 100%
12512	CUR,FLX,VLT -100%
12514	SPEED: 100%
12515	SPEED: -100%
12516	SIG1(SPEED REF)
12517	SIG2(SPEED STEP)
12518	SIG3(TORQ. REF A)
12519	SIG4(TORQ. REF B)
12520	
12522	SIG7(ELUX BEE)
12523	SIG8(EMF REF)
12524	SIG9(FORCE FWD)
12525	SIG10(FORCE REV)
12526	SIG11(CURR. REF)
12527	SIG12(CURR. STEP)
12601-	Signals for application function blocks
12701-	Signals for application function blocks
12799	
12801-	Signals for application function blocks
12899	
12901-	Signals for application function blocks
12999	Signals for application function blocks
13013	Signals for application function blocks
13501	STATUS WORD
13502	LTIME
13503	LDATE
13601	Conv.Curr.Slave
13602	Arm.Curr.Slave
13603	Conv.Curr.Both
13605	
13606	IREF1-Polarity
13607	IREF1-Pol.Master
13608	CurrRef.2
13609	IREF2-Polarity
13610	IREF2-Pol.Broth.
13611	Bridge
13612	priuge of Slave
13614	Fault Reversion
13615	Fault Current
13616	Logik f.INHIBIT
13617	Input X18:13
13618	Input X18:14
13619	Input X18:15
13620	Input X18:16
13622	Beserved f Commun
13801-	Function for application winder
13819	
13901-	Function for application winder
13912	1

Since we aim to always meet the latest state-of-the-art standards with our products, we are sure you will understand when we reserve the right to alter particulars of design, figures, sizes, weights, etc. for our equipment as specified in this brochure.

ABB Automation Products GmbH Postfach 1180 68619 Lampertheim • GERMANY Telefon +49(0) 62 06 5 03-0 Telefax +49(0) 62 06 5 03-6 09 www.abb.com/dc

ST20

1/8

AO2

2/8

1/8

RAMP_3

11801

SPEED

REFERENCE

RAMP GENERATOR

UT 1802	[P1] 0] [P2] 0] FREE SIGNALS – (12517)	SP -13 2001 IN 2005 FRS 2003 WIN MODE- 2004 WIN SIZE - 2002 STEP ST5	SPEI		OUT OF WIN STEP RESP	1 <u>2001</u> 12002 12003	
	Spe	ed co	ntro	oller			
	5P-10	QUE/CURRENT LIM			12301		
2510) 2301 s 2511) 2302 s 2510) 2303 T 2510) 2304 T 2511) 7	SPC TORQ MAX		Min SF Max SF Min TF Min TF	PC TORQMAX1 PC TORQMIN1 REF TORQMAX1 REF TORQMIN1 —TORQ MAX2	12301 12302 12303 12304 12304 12305		
2305 230 2315 2315 2315 2315 2317 2317 2317 2317 2307 2307 2307 2307 2307 2307 2307 2307 2307 2307 2317 2	ORQ MAX		x.y 1192 1192	- CURR LIM P	12306		
B Softwa ersion: :	are structure S21.233 S21V2_0 DCS500_1.5						

4/8

3/8

2/8

		511	CONVERTER PROTECTION	
P1	110	540	ARM OVERVOLT LEV	
P2	230	512	ARM OVERCURR LEV	
P3	80	508	U NET MIN1	
P4	60	509	U NET MIN2	
P5	5000	510	PWR DOWN TIME	
P6	0	514		
P7	4	515		
	10	516		
Pol	10	527	EARTH.FLIDLY	
P9	0		CONV TEMP DELAY	
			ST20	
			SP -22 M1PROT_2	
		1401	MOTOR 1 PROTECTION	
DI	0	1402		11401
	0	1403	MOTITEMP ALARM L MOTI MEAS TEMP	
L P2	0	1404	MOT1.TEMP FAULT L	
		1404	KLIXON IN	11100
P3	0	1405	MODEL1.SEL MOT1 CALC TEMP	11402
P4	4096	1406	MODEL1.CURR	
P5	120	1407	MODEL1.ALARM L	
P6	130	1408	MODEL 1 TRIP I	
P7	240	1409	MODEL 1 TC	
	6-TU			

	SP -21	M2PROT_2	_
P1 0- P2 0- P3 0- P4 4096- P4 120- P4 130- P7 240-	SP-21 1607 1602 1603 1604 1604 1604 1605 1606 1606 1606 1606 1607 1608 1607 1608 1607 1608	M2PROT 2 PROTECTION N LLARM L MOT2 MEAS TEMF AULT L MOT2 CALC TEMF R R R R L L	11601

User events

Brake control

<u>SP -32</u>	_
(10902)	
(10503) TORQUE ACT	
← 301 HOLD REF TREF OUT	10301
DI8 (10715)	10302
SPEED MONITOR (12201)	10303
→ 304 ACT BRAKE LIFT BRAKE	10304
P1 0 305 START DELAY BRAKE RUN	10305
P2 0 306 STOP DELAY	
P3 0 307 HOLD TORQ	
P4 0 308 EMESTOP BRAKE	
ST20	

Data logger

Additional signals

CONSTANTS 0 12501 - CONST 0 12502 12503 - CONST_1 12504 - CONST_2 10 12505 - CONST 10 100 12506 1000 12507 - CONST 1000 31416 12508 - CONST_31416 EMF:100% 12509 EMF_MAX TORQ:100% 12510 - TORQ MAX TORQ:-100% 12511 - TORQ MAX N CUR,FLX,VLT: 100% CUR,FLX,VLT: 100% 12513 CUR,FLX,VLT:-100% 12513 CONST_4095 CONST_4095 SPEED: 100% 12514 SPEED:-100% 2515 CONST_20000 FREE SIGNALS SIG1(SPEED REF) 12516 SIG2(SPEED STEP) SIG3(TORQ. REF A) SIG4(TORQ. REF B) 12519 TORQ_REF_B SIG5(TORQUE STEP) SIG5(LOAD SHARE) 12520 TORQ_REF_B 12520 TORQ_STEP 12521 LOAD_SHARE SIG7(FLUX REF) SIG8(EMF REF) SIG9(FORCE FWD) SIG10(FORCE REV) SIG11(CURR. REF) 12526 SIG11(CURR. REF) 12527 CUR_REF 12527 CUR_STEP) FLTHND SP-103 FAULT HANDLING FAULT WORD 1 11101 FAULT WORD 2 11102 FAULT WORD 3 11103 LATEST FAULT ALARM WORD 1 11104 ALARM WORD 2 11105 ALARM WORD 3 11106 LATEST ALARM 11108 OPERATING HOURS 11109 T20

Speed reference handling

The speed reference for the ramp function generator is formed by the REF SEL blocks, which can be used to select the reference value required, the CONST REF block, which generates a maximum of 4 permanently settable reference values, the SOFTPOT block, which reproduces the function of a motorpotentiometer in conjunction with the block RAMP GENERATOR, or by the Al1 block (analogue input 1).

The RAMP GENERATOR block contains a ramp function generator with 2 ramp-up and ramp-down ramps, 2 times for the S-curve, limitation for upper and lower limits, hold function and the functions for "Follow" the speed reference or "Follow" the speed feedback. There is a special signal available for the treatment of acceleration and deceleration.

The REF SUM block enables the output of the ramp function generator and a user-definable signal to be added.

Speed feedback calculation

This page depicts the conditioning routine for speed feedback and reference values. The AITAC block is used to read in the speed feedback from an analogue tacho The SPEED MEASUREMENT block processes the 3 possible feedback signals: analogue tacho, pulse generator or the converter's output voltage (SPEED_ACT_EMF) - conditioned by the EMF TO SPEED CALC block (if 2102=5, no field weakening function possible). Parameters are used for activating smoothing functions, selecting the feedback value and where applicable for setting the maximum speed. This parameter also serves for scaling the speed control

The SPEED MONITOR block contains motor stalled - and tacho monitoring function, and compares a selected speed feedback value against overspeed, minimum speed and 2 setta ble thresholds.

The AO1 block represents a scalable analogue output.

Speed controller

The result is compared to the speed feedback from the SPEED MEASUREMENT block. using the SPEED ERROR block, and then passed to the speed controller. This block permits evaluation of the system deviation by means of a filter. Moreover, it is possible here to make a few settings which are needed for the "Window" operating mode. If the drive's speed feedback is within a window around the reference value, then the speed controller is "bypassed" (provided "Window Mode" has been activated; the drive is controlled by means of a torque reference value at the TORQ REF HANDLING block). If the speed feedback is outside the window, the speed controller will be activated, and will lead the drive's actual speed back into

The SPEED CONTROL block contains the speed controller with P, I and DT1 contents. For adaptation it receives a variable P-amplification.

Torque / current limitation

The "torque reference" generated by the speed controller is passed to the input of the CURRENT CONTROL block via the TORQ REF HANDLING block, and there it is converted into a current reference value and used for current regulation. The TORQUE / CURRENT LIMITATION block is used for generating the various reference values and limitations; this block contains the following functions: "speed-dependent current limitation", "gear backlash compensation", "generation of the values for static current limitation" and "torque limitation" The values for the various limitations are used again at some other points, for instance at the following blocks: SPEED CONTROL, TORQ REF HANDLING, TORQ REF SELECTION, and CURRENT CONTROL

The Al2 block (analogue input 2) is used for reading in an analogue signal. The TORQ REF SELECTION block contains a limitation with upstream addition of two signals, one of which can be routed through a ramp function generator; the other signal's evaluation can be dynamically altered using a multiplier.

The TORQ REF HANDLING block determines the drive's operating mode. When in position 1, the speed control mode has been activated, whereas in position 2 it is torque control mode (no closed-loop control since there is no "genuine" torque feedback available in the unit). In both cases, the reference value required comes from outside. Positions 3 and 4 are a combination of the first two options stated above. Note that with position 3 the smaller value out of external torque reference and speed controller output is passed to the current controller whereas with position 4 it is the larger one. Position 5 uses both signals, corresponding to the method of functioning of "Window Mode".

Armature current controller

The CUBBENT CONTROL block contains the current controller with a P and I content plus. an adaptation in the range of discontinuous current flow. This block also contains functions for current-rise limitation, the conversion of torque reference value into current reference value by means of the field crossover point, and some parameters describing the supply mains, and the load circuit.

At applications with high inductive load and high dynamic performance a different hardware is used to generate the signal current equal to zero. This hardware is selected by the CURRENT MONITOR block. The functions monitoring the current can now be adapted to the needs of the application. This gives easier handling and a higher degree of safety at high performance drives. like test rigs.

The DCF mode can be activated via the block DCF FIELDMODE. The functionality within this mode can be specified. If one of these functions is selected the current controller gets a different characteristic, the overvoltage protection DCF 506 is monitored and the field current reference via the X16: terminals is routed.

Line and motor data

The SETTINGS block serves for scaling all important signals, such as line voltage, motor voltage, motor current and field current. Parameters are available to adjust the control to special conditions like weak networks or interactions with harmonic filter systems. The language, in which you want to read your information on the panel, can be selected. The AO2 block represents a scalable analogue output.

Motor voltage controller

The EMF CONTROL block contains the armature-circuit voltage controller (e.m.f. controller). It is based on a parallel structure comprising a PI controller and a precontrol feature, generated with a characteristic of 1/x. The ratio between the two paths can be set. The output variable of this block is the field current reference value, which is produced from the flux reference value by another characteristic function using linearization. To enable the drive to utilize a higher motor voltage even with a 4 quadrant system two different field weakening points can be set by parameter

7/8

7/8

8/8

Field current controller 1 and 2

Since a DCS power converter can control 2 field units, some of the function blocks are duplicated. This means that, depending on the mechanical configuration of the drives concerned, you can control 2 motors either in parallel or alternatively. The requisite configuration of the software structure can be generated by designing the blocks appropriately during the commissioning routine.

The MOTOR1 FIELD / MOTOR2 FIELD block reads in the field current reference value and all values which are specific to the field supply unit, and transfers these to the field power converter via an internal serial link; the field power converter is scaled to suit its hardware, and performs field current regulation. The field current direction for motor 1 can be determined using binary commands, while for motor 2 it can be generated in the course of an application upstream of the block concerned.

The MOTOR1 FIELD OPTIONS / MOTOR2 FIELD OPTIONS block controls the freewheeling function in the event of line undervoltage, and the field current reversal function with field reversal drives (only for motor 1). In case of field reversal drives, there is an option for selectively influencing the moment of armature-circuit and field current reduction and build-

Binary in and outputs (standard)

The DRIVE LOGIC block reads in various signals from the system via digital inputs DIx, processes them, and generates commands, which are outputted to the system via digital outputs DOx, e.g. for controlling the power converter's line contactor, the field-circuit contactor or contactors for various fans, or for outputting status messages.

Additional binary inputs

The AI3 and AI4 blocks represent another 2 analogue inputs which have as yet not been assigned to any particular functions. The blocks A15 and A16 represent another 2 additional inputs which are only active, if the board SDCS-IOE1 is connected. Another 7 digital inputs DI 9... DI15 are available with this additional hardware.

Inputs and outputs for fieldbus

A fieldbus module with serial communicated references should be used, if analogue and digital signals are not sufficient for the control of the drive (equipment for the installation of Profibus, CS31, Modbus etc. is available). This type of module is activated by means of the block FIELDBUS. The data transferred from the control to the converter are stored in the blocks DATASET1 and DATASET3 as 16-bit-information. Depending on the application the output pins of these blocks have to be connected to input pins of other blocks in order to transport the message. The same procedure is valid for blocks DATASET2 and DATASET4, if they are connected. These blocks are transmitting information from the converter to the control system.

Inputs and outputs for 12 pulse

The converter is able to be configurated in a 12-pulse parallel application. In this case you need: two identical armature converters; one field supply unit; one T-reactor; communication via ribbon cable connected to X 18 of both converters The 12-PULSE LOGIC must be activated and guarantees a synchronous control of the MASTER and the SLAVE drive.

Maintenance

The MAINTENANCE block provides reference values and test conditions so as to enable all controllers to be adjusted in the power converter. If the panel is used as a meter in the cubicle door, an assortment of signals can be defined here.

Monitoring

The CONVERTER PROTECTION block monitors the armature circuit for overvoltage and overcurrent, and monitors the mains for undervoltage. It provides an option for reading in the total current of the 3 phases through an additional external sensor and monitoring it for "not equal to zero". Adaptations are made for rebuild applications, which keep the power part and the fan, to sense overload conditions or fan failures.

The MOTOR1 PROTECTION block, in its upper part, evaluates either the signal from an analogue temperature sensor, or from a Klixon. In its lower part, it computes motor heat-up with the aid of the current feedback value and a motor model, after which a message is outputted

The MOTOR2 PROTECTION block works in the same way as the MOTOR1 PROTECTION block, but without Klixon evaluation.

User event

By using the block USER EVENT1 to USER EVENT6 six different messages are created, which are displayed as faults or alarms on the panel CDP312 as well as on the 7 segment display of the converte

Brake control

The BRAKE CONTROL block generates all signals needed for controlling a mechanical brake

Data logger

The block DATA LOGGER is able to record up to six signals. The values of these signals will be stored in a battery buffered RAM and are still available after a break down of the supply voltage. The time of recording can be influenced by a trigger signal, as well as the number of recorded values before and after the trigger signal. The function DATA LOGGER can be set with both panel and PC tool. For evaluation of the recorded values a PC tool is recommended.

Additional signals

By using the block FAULT HANDLING the faults and alarms of the drive are regrouped as 16bit information. The CONSTANTS and FREE SIGNALS blocks can be used for setting limitations or special test conditions

	SF -104
	CURRENT MONITOR
P1 32767 418	CURRENTE03
	lact
	Monit 1 A137
P2 7 421	CUR RIPPLE LIM method 2 2 2 A137
420	
P3 0	
P4 0 419	ZERO CUR DETECT
	EXTERINAL 1 SIGNAL
	via Options
	STSYN

wheeling function in the event of line undervoltage, and the field current reversal function with field reversal drives (only for motor 1). In case of field reversal drives, there is an option for selectively influencing the moment of armature-circuit and field current reduction and build-

processes them, and generates commands, which are outputted to the system via digital outputs DOx, e.g. for controlling the power converter's line contactor, the field-circuit contac-

assigned to any particular functions. The blocks A15 and A16 represent another 2 additional inputs which are only active, if the board SDCS-IOE1 is connected. Another 7 digital inputs DI

digital signals are not sufficient for the control of the drive (equipment for the installation of Profibus, CS31, Modbus etc. is available). This type of module is activated by means of the block FIELDBUS. The data transferred from the control to the converter are stored in the blocks DATASET1 and DATASET3 as 16-bit-information. Depending on the application the output pins of these blocks have to be connected to input pins of other blocks in order to transport the message. The same procedure is valid for blocks DATASET2 and DATASET4, if they are connected. These blocks are transmitting information from the converter to the

controllers to be adjusted in the power converter. If the panel is used as a meter in the cubicle

equal to zero". Adaptations are made for rebuild applications, which keep the power part and The MOTOR1 PROTECTION block, in its upper part, evaluates either the signal from an analogue temperature sensor, or from a Klixon. In its lower part, it computes motor heat-up with the aid of the current feedback value and a motor model, after which a message is The MOTOR2 PROTECTION block works in the same way as the MOTOR1 PROTECTION

By using the block USER EVENT1 to USER EVENT6 six different messages are created, which are displayed as faults or alarms on the panel CDP312 as well as on the 7 segment

The BRAKE CONTROL block generates all signals needed for controlling a mechanical

be stored in a battery buffered RAM and are still available after a break down of the supply voltage. The time of recording can be influenced by a trigger signal, as well as the number of

pit information. The CONSTANTS and FREE SIGNALS blocks can be used for setting limita-